MÜLLER-BBM

Müller-BBM GmbH Niederlassung Nürnberg Fürther Straße 35 90513 Zirndorf

Telefon +49(911)600445 0 Telefax +49(911)600445 11

www.MuellerBBM.de

Dipl.-Ing. (FH) Frank Ellner-Schuberth Telefon +49(911)600445 15 Frank.Ellner-Schuberth@mbbm.com

27. November 2020 M158037/02 Version 1 ELR/MNR

Bericht über die Durchführung von Emissionsmessungen im Jahr 2020

BHI GmbH

Biomasseheizkraftwerk Ilmenau

Bericht Nr. M158037/02

Betreiber: BHI GmbH

Biomasse Heizkraftwerk Ilmenau Gewerbepark "Am Wald" 18 a

98693 Ilmenau

Standort: Gewerbepark "Am Wald" 18 a

98693 Ilmenau

Bericht erstellt von: M. Sc. Stefan Hartmann

Datum der Messungen: 22. bis 24.09.2020

Müller-BBM GmbH Niederlassung Nürnberg HRB München 86143 USt-IdNr. DE812167190

Geschäftsführer: Joachim Bittner, Walter Grotz, Dr. Carl-Christian Hantschk, Dr. Alexander Ropertz, Stefan Schierer, Elmar Schröder

\\S-MUC-FS01\ALLEFIRMEN\W\PROJ\158\\M158037\M158037_02_BER_1D.DOCX:27. 11. 2020

Bericht über die Durchführung von Emissionsmessungen

Name der nach § 29b BlmSchG bekannt gegebenen

Stelle

Müller-BBM GmbH

Befristung der Bekanntgabe nach § 29b BlmSchG

Bekanntgabe durch das Bayerische Landesamt für Umwelt

(LfU Bayern), gültig bis 05.12.2024

Berichtsnummer M158037/02

Datum 27. November 2020

Betreiber BHI GmbH

Biomasse Heizkraftwerk Ilmenau Gewerbepark "Am Wald" 18 a

98693 Ilmenau

Standort Gewerbepark "Am Wald" 18 a

98693 Ilmenau

Art der Messung von gas- und partikelförmigen Emissionen

Auftragsnummer 013-4500349681/11440

Auftragsdatum 27.08.2020

Messtermin 22. bis 24.09.2020

Berichtsumfang 57 Seiten, davon 27 Seiten Anlagen

Aufgabenstellung wiederkehrende Messungen zur Überprüfung der

Einhaltung der Emissionsbegrenzungen gemäß

Genehmigungsbescheid

Zusammenfassung

Anlage zur Verwertung fester Abfälle mit brennbaren

Bestandteilen durch thermische Verfahren, insbesondere

Verbrennung

Betriebszeiten max. 8.760 h/a, abzüglich Revisionszeiten

Emissionsquelle 1 Abgaskamin

Messkomponenten Fluorwasserstoff (HF), Cyanwasserstoff (HCN),

Distickstoffoxid (N2O), Benzo(a)pyren, PCDD/F + dl-PCB

(gemäß 17. BlmSchV, Anlage 2), Quecksilber,

Metalle gemäß 17. BlmSchV

Quellennummer 01

Messergebnisse

Tabelle 0.1. Zusammenfassung der Messergebnisse – Massenkonzentration.

Komponente			Einheit	Y_{max} - U_P *)	$Y_{max}+U_{P}^{*}$	Grenzwert	Betriebszustand
N ₂ O			mg/m³,N	0	31	-	
HF		mg/m³,N	0	0	1		
Hg			mg/m³,N	0,00	0,00	0,03	
Schwermetalle (Cd, Tl) nach § 8 (1) 3, Anlage 1 a der 17. BlmSchV	Summe nach Anlage 1 a		mg/m³,N	0,00	0,00	0,05	
Schwermetalle (Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Sn) nach § 8 (1) 3, Anlage 1 b der 17. BlmSchV	Summe nach Anlage 1 b		mg/m³,N	0,0	0,0	0,5	siehe 5.1
Stoffe nach § 8 (1) 3, Anlage 1 c der 17. BlmSchV	Summe nach Anlage 1 c	1)	mg/m³,N	0,01	0,01	0,05	
PCDD/F + dl-PCB	WHO-TEQ	1)	ng/m³,N	0,0	0,0	0,1	

 $^{^{\}star})$ Rundung gemäß bundeseinheitlichem Mustermessbericht

Tabelle 0.2. Zusammenfassung der Messergebnisse – Massenströme.

Komponente		Einheit	Y _{max} -U _P *)	Y _{max} +U _P *)	Grenzwert	Betriebszustand	
HCN		g/h	6	10	15	siehe 5.1	
	*)	*) Rundung gemäß bundeseinheitlichem Mustermessbericht					
	1) F	remdanalytik (sie	he 1.12)				
	•	√ _{max} : maximaler M	essw ert				
	l	J _P : Messunsicherl	neit				

Die angegebenen Massenkonzentrationen beziehen sich auf das trockene Abgas im Normzustand (273 K, 1013 hPa) und einen Sauerstoffbezugswert von 11 Vol.-%.

Anmerkung:

Bei den Summenbildungen bleiben Einzelstoffe (Metalle, PCDD/F- und dl-PCB-Kongenere, Benzo(a)pyren), deren Konzentrationen unterhalb der jeweiligen Bestimmungsgrenze liegen, unberücksichtigt (für den Fall, dass alle in der Summe enthaltenen Einzelkomponenten unterhalb der jeweiligen Bestimmungsgrenze liegen, ergibt sich demzufolge für den Summenwert der Zahlenwert "Null").

Fremdanalytik (siehe 1.12)
 Y_{max}: maximaler Messw ert
 U_P: Messunsicherheit

Inhaltsverzeichnis

1	Formulierung der Messaufgabe	5
1.1	Auftraggeber	5
1.2	Betreiber	5
1.3	Standort	5
1.4	Anlage	5
1.5	Messzeit (Datum)	5
1.6	Anlass der Messung	5
1.7	Aufgabenstellung	5
1.8	Messobjekte	6
1.9	Ortsbesichtigung vor Messdurchführung	6
1.10	Messplanabstimmung	7
1.11	An den Arbeiten beteiligte Personen	7
1.12	Beteiligung weiterer Institute	7
1.13	Fachlich Verantwortlicher	7
2	Beschreibung der Anlage und der gehandhabten Stoffe	8
2.1	Art der Anlage	8
2.2	Beschreibung der Anlage	8
2.3	Beschreibung der Emissionsquelle	8
2.4	Angabe der laut Genehmigungsbescheid möglichen Einsatzstoffe	9
2.5	Betriebszeiten	9
2.6	Einrichtung zur Erfassung und Minderung der Emissionen	9
3	Beschreibung der Probenahmestelle	11
4	Mess- und Analysenverfahren, Geräte	12
4.1	Abgasrandbedingungen	12
4.2	Kontinuierliche Messverfahren	13
4.3	Diskontinuierliche Messverfahren	15
5	Betriebszustand der Anlage während der Messungen	25
5.1	Produktionsanlage	25
5.2	Abgasreinigungsanlagen	25
6	Zusammenstellung der Messergebnisse und Diskussion	26
6.1	Bewertung der Betriebsbedingungen während der Messungen	26
6.2	Messergebnisse	26
6.3	Messunsicherheiten	29
6.4	Plausibilitätsprüfung	30
7	Anlagen	31

1 Formulierung der Messaufgabe

1.1 Auftraggeber

BHI GmbH Biomasse Heizkraftwerk Ilmenau Gewerbepark "Am Wald" 18 a 98693 Ilmenau

1.2 Betreiber

BHI GmbH Biomasse Heizkraftwerk Ilmenau Gewerbepark "Am Wald" 18 a 98693 Ilmenau

Ansprechpartner Herr Vogeler

Tel. +49(3677)641310

Betreiber-/Arbeitsstätten-Nr. nicht bekannt

1.3 Standort

BHI GmbH Biomasse Heizkraftwerk Ilmenau Gewerbepark "Am Wald" 18 a 98693 Ilmenau

Flur 9/10, Flurstücke 1257/1, 1274/1, 1258/1, 1259, 1303/2, 1400/45, 1400/49 und 1930/2

1.4 Anlage

Anlage zur Verwertung fester Abfälle mit brennbaren Bestandteilen durch thermische Verfahren, insbesondere Verbrennung

genehmigungsbedürftig gemäß BlmSchG i. V. mit Nr. 8.1 und 8.2 des Anhangs 1 zur 4. BlmSchV, in der Fassung der Bekanntmachung vom 31.05.2017 (BGBI. I, Nr. 33, S. 1440 vom 08.06.2017)

Anlagen-Nr.: 01

1.5 Messzeit (Datum)

Datum der Messung 22. bis 24.09.2020
Datum der letzten Messung 13. bis 15.11.2019

06.02.2020 (Nachmessung Komponente HCN)

Datum der nächsten Messung 2021

1.6 Anlass der Messung

wiederkehrende Messung zur Überprüfung der Einhaltung der Emissionsbegrenzungen

1.7 Aufgabenstellung

Messung gemäß nachstehendem Genehmigungsbescheid

Genehmigungsbehörde Thüringer Landesverwaltungsamt Weimar Genehmigungsbescheid Az.: 76/01 und 76/01/N vom 26.03.2003

Überwachungsbehörde Landratsamt Ilmkreis

Emissionsbegrenzungen gemäß Ziffer 2.2 des o. g. Genehmigungsbescheids:

Buch- stabe	Schadstoff	Tagesmittelwert in mg/Nm³	Halbstundenwert in mg/Nm³
a)	Gesamtstaub	5	20
b)	Kohlenmonoxid	50	100
c)	Gesamtkohlenstoff	10	20
d)	Chlorwasserstoff	10	60
e)	Fluorwasserstoff 1)	1	4
f)	Schwefeldioxid	50	200
g)	Stickstoffdioxid	150	400
h)	Quecksilber ²⁾	0,03	0,05
i)	Cd, TI		0,05
j)	SbSn (17.BlmSchV)		0,5
k)	As, Benzo(a)pyren, Cd, Co, Cr		0,05
l)	Ammoniak	10	15
m)	Cyanwasserstoff		15 g/h
n)	PCDD/F + dI-PCB (gemäß 17. BImSchV, Anlage 2)	0,1 ng I-TEq/Nm³	-
	Sauerstoff- Bezugswert	11,0 Vol%	11,0 Vol%

 $^{^{1)}}$ Auf die kontinuierliche Messung kann verzichtet werden, wenn die Grenzwerteinhaltung (< 60 %) sicher nachgewiesen wurde.

Die **hervorgehobenen** Komponenten werden über Einzelmessungen bestimmt. Die Komponenten a), b), c), d), f) und g) werden kontinuierlich seitens des Betreibers überwacht.

Die Angaben beziehen sich auf trockenes Abgas im Normzustand (1013 hPa, 273 K) und den angegebenen Bezugssauerstoffgehalt.

1.8 Messobjekte

Abgasrandbedingungen	Sauerstoff O ₂ , Kohlendioxid CO ₂ , Temperatur, Druck, Feuchte, Volumenstrom
gasförmige Emissionen	Fluorwasserstoff, Cyanwasserstoff, Distickstoffoxid, Quecksilber
partikelförmige Emissionen	staub- und gasförmige Schwermetalle nach 17. BImSchV (Cd, Tl, Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Sn)
Besondere hochtoxische Abgasinhaltsstoffe	PCDD/F + dl-PCB (gemäß 17. BlmSchV, Anlage 2), Benzo(a)pyren

1.9 Ortsbesichtigung vor Messdurchführung	
keine Ortsbesichtigung durchgeführt	da mit den vorherigen Messungen an dieser Anlage befasst
	Messbedingungen entsprechend DIN EN 15259
	☐ nicht vorgefunden (Maßnahmen siehe Abschnitt 3)

ELR/MNR

²⁾ Auf die kontinuierliche Messung von Quecksilber kann verzichtet werden, wenn die Messergebnisse unter 20 % des Grenzwertes liegen.

NS-MUC-FS01\ALLEFIRMEN\M\PROJ\158\M158037\M158037_02_BER_1D.DOCX:27.11.2020

1.10 Messplanabstimmung

Die Messplanung wurde mit dem Auftraggeber abgestimmt und dem Landratsamt Ilmenau, der Thüringer Landesanstalt für Umwelt und Geologie und dem Auftraggeber am 17.09.2020 in Form eines Kurzmessplanes übermittelt.

1.11 An den Arbeiten beteiligte Personen

Dipl.-Ing. (FH) Frank Ellner-Schuberth

M. Sc. Stefan Hartmann

1.12 Beteiligung weiterer Institute

PCDD/F-, dl-PCB- und PAH-Analytik mas münster analytical solutions gmbh

Technologiepark Münster Wilhelm-Schickard-Str. 5

48149 Münster

1.13 Fachlich Verantwortlicher

Name Dipl.-lng. (FH) Frank Stöcklein

Telefon-Nr. +49 (911)600445-0

E-Mail-Adresse Frank.Stoecklein@mbbm.com

Anzahl

2 Beschreibung der Anlage und der gehandhabten Stoffe

2.1 Art der Anlage

Anlage zur Verwertung fester Abfälle mit brennbaren Bestandteilen durch thermische Verfahren, insbesondere Verbrennung

genehmigungsbedürftige Anlage gemäß 8.1 und 8.2 des Anhangs 1 zur 4. BlmSchV, in der Fassung der Bekannt-machung vom 31.05.2017 (BGBI. I, Nr. 33, S. 1440 vom 08.06.2017)

2.2 Beschreibung der Anlage

Die Firma Biomasseheizkraftwerk Ilmenau GmbH betreibt im Gewerbepark Am Wald 18a in Ilmenau eine Anlage zur Verwertung fester Abfälle mit brennbaren Bestandteilen durch thermische Verfahren, insbesondere Verbrennung.

In einem Kessel werden Hackschnitzel aus naturbelassenem Holz und Rinde sowie Altholz der Kategorien A I, A II, und A III als Brennstoffe eingesetzt. Als Brennstoff für die Zünd- und Zusatzfeuerung wird Erdgas verwendet.

Die Rauchgasreinigungsanlage besteht aus einer Harnstoffzugabe in der Nachbrennkammer, einem vorgeschalteten Zyklon, einer Kalk-Additiv-Zugabe und einem 4-Kammer-Gewebefilter.

Das gereinigte Abgas wird über einen 45 m über Grund hohen Kamin in die Atmosphäre emittiert.

Technische Daten des Dampferzeugers

Anlagenleistung 23,5 t_D/h bei 47 bar und 450 °C Dampfleistung

Hersteller Fa. Bertsch GmbH – Österreich

Baujahr2005Hersteller-Nr.12.351zulässiger Betriebsüberdruck55 barHeizfläche2.255 m²Wasserinhalt34.230 l

Kesselbauart Eintrommel-Naturumlaufkessel

Beheizungsart Rostfeuerung

Technische Daten des Stützbrenners/ Anfahrbrenner

Hersteller Fa. Weishaupt GmbH

Baujahr 2004
Bauart/ Ausführung ZM-NR
Brennstoff Erdgas
Typ G 40/Z-A
Leistung 3.000 kW

2.3 Beschreibung der Emissionsquelle

Emissionsquelle Kamin
Höhe über Grund 45 m
Austrittsfläche 1,27 m²

Rechtswert/Hochwert 4425407/5618470

ELR/MNR

Bauausführung freistehender einzügiger Stahlkamin

2

2.4 Angabe der laut Genehmigungsbescheid möglichen Einsatzstoffe

Hackschnitzel aus folgenden Holzkategorien:

- naturbelassenes Holz oder Rinde aus der Land- und Forstwirtschaft
- Altholz der Kategorien A I, A II, und A III
- Erdgas als Brennstoff für die Zündfeuerung

2.5 Betriebszeiten

2.5.1 Gesamtbetriebszeit

max. 8.760 h/a, abzüglich Revisionszeiten

tägliche Betriebszeit 24 Stunden wöchentliche Betriebszeit 7 Tage

2.5.2 Emissionszeit nach Betreiberangaben

wie Gesamtbetriebszeit

2.6 Einrichtung zur Erfassung und Minderung der Emissionen

2.6.1 Einrichtung zur Erfassung der Emissionen

2.6.1.1 Anlage zur Emissionserfassung

Das Abgas folgender Anlagenteile wird durch festinstallierte Rohrleitungen über eine Filterentstaubung der Atmosphäre zugeführt:

- Kesselabsaugungen
- Nachverbrennung mit Stützfeuerung
- Harnstoffzugabe (SNCR- Anlage)
- Zyklon
- Kalkhydratzugabe
- Gewebefilter
- Abgasventilator
- Kamin

2.6.1.2 Erfassungselement

angeschweißte bzw. angeflanschte Abgaskanäle

2.6.1.3 Ventilatorkenndaten

Fabrikat Radialventilator

Typ Scheuch-Vkd50 0900-hc 14

Druckdifferenz 10.830 Pa
Baujahr 2004

Volumenstrom 96.000 m³/min

ELR/MNR

Motorleistung 250 kW

2.6.1.4 Ansaugfläche

entfällt

Filterfläche:

Abreinigung:

Filterflächenbelastung:

Abreinigungsrhythmus:

2.6.2 Einrichtung zur Verminderung der Emissionen

Zyklonanlage	
Hersteller:	Fa. SCHEUCH – Österreich
Baujahr:	2004
Type:	Zp 5 – 2000 links/rechts
Einzelzyklone:	1
Schaltung/Bauart:	parallel
Durchmesser (mm):	2.000
Druckdifferenz (Pa):	ca. 2.500
letzte Wartung:	04/2018
Abreinigung:	Schnecke und Zellradschleuse
SNCR-Anlage	
Hersteller:	Fa. Mehldau & Steinfath
Baujahr:	2004
Type:	ohne
Zudosierung:	Harnstofflösung, ca. 45 Gew.% (NOxAMID45)
Zugabemenge:	30 – 40 Liter/h bei Volllast
Ort der Zugabe:	Nachbrennkammer
Gewebefilter	
Hersteller:	Fa. SCHEUCH – Österreich
Baujahr:	2004
Bauart:	Mehrkammerfilter
Anzahl der Schläuche:	480
Filtermaterial:	PTFE-Nadelfilz/PTFE-Stützgewebe
Filterfläche:	1.400 m²
Filterflächenbelastung:	1,14 m³/m² x min
Abreinigung:	Druckluftimpulse
Abreinigungsrhythmus:	differenzdruckgesteuert
letzter Filterwechsel:	04/2018
Das Additivsilo ist mit einem Siloaufsatzfilter zur Verminde	erung der Emissionen ausgerüstet.
Gewebefilter	
Hersteller:	Fa. SCHEUCH – Österreich
Fabrik-Nr.	F11114/04
Baujahr:	2004
Anzahl der Schläuche:	36
Filtermaterial:	PTFE-Nadelfilz/PTFE-Stützgewebe

Beim Betrieb des Siloaufsatzfilters wurden durch Müller-BBM keine Staubemissionen festgestellt. Der Filter ist in gutem Zustand.

19 m²

5 min.

78 m³/m² x h Druckluftimpulse

2.6.3 Einrichtung zur Kühlung des Abgases

Es sind keine Einrichtungen zur Kühlung der Abgase installiert.

3 Beschreibung der Probenahmestelle

3.1 Lage des Messquerschnittes	
Die Messstelle liegt	⊠ im Freien ☐ im Gebäude
	☐ vor Saugzug ☐ nach Saugzug
	☐ im Abgaskanal ☒ im Kamin
Die Probenahmestelle liegt	24 m über Bodenniveau.
Zugang	Treppe und Messbühne
Lage Messstrecke	vertikal im Kamin
Länge Ein-/Auslaufstrecke	10 m/ 21 m
hydraulischer Durchmesser d _h	1,272 m
Erfüllung Empfehlungen nach DIN/EN 15259, Punkt 6.2.1 b)	ja
Bei Ein- und Auslaufstrecken, die wie im vorliegenden Fall Allgemeinen homogene Strömungsverhältnisse zu erwarte	den Empfehlungen der DIN EN 15259 entsprechen, sind im n.
Winkel zwischen Gasstrom und Mittelachse < 15°	ja
keine lokale negative Strömung	ja
Mindestgeschwindigkeit entsprechend Messverfahren	ja
Verhältnis höchste zu niedrigste Geschwindigkeit maximal 3 : 1	ja
Erfüllung Anforderungen nach DIN/EN 15259, Punkt 6.2.1 c)	ja
Die Überprüfung der Strömungsverhältnisse im Messquers DIN EN 15259 (siehe oben) erfüllt sind. Die an den einzeln sind in den Strömungsprofilen in der Anlage 3 dargestellt.	
3.2 Abmessungen des Messquerschnittes	
geometrische Form	kreisförmig, Ø 1,272 m
3.3 Anzahl der Messachsen und Lage der Messpunk	te im Messquerschnitt
Anzahl der Messachsen	2, um 90° zueinander versetzt
Anzahl der Messpunkte/Achse	je 4
Gültige Homogenitätsprüfung	
☐ liegt vor	
Datum der Homogenitätsprüfung	21.09.2009
Prüfbericht-Nr.	M80773/3
Prüfinstitut	Müller-BBM GmbH
Ergebnis der vorliegenden Homogenitätsprüfung	Messung an einem beliebigen Punkt für gasförmige Komponenten
	☐ Messung an einem repräsentativen Punkt
	Netzmessung erforderlich für partikelförmige Komponenten
3.4 Anzahl und Größe der Messöffnungen (Messstut	zen)
Anzahl	4, um 90° zueinander versetzt

je Ø 3"

Größe

4 Mess- und Analysenverfahren, Geräte

4.1 Abgasrandbedingungen

4.1.1 Strömungsgeschwindigkeit

Messverfahren Prandtl'sches Staurohr in Verbindung mit

elektronischem Mikromanometer

Prüfmittel (Hersteller/Typ/Nummer) siehe Anlage 1, Prüfmittelkatalog, Messkomponente p_{dyn}

Erfassung durch Netzmessungen sowie kontinuierlich in einem

repräsentativen Messpunkt mit

elektronischer/handschriftlicher Dokumentation

DIN EN ISO 16911-1 (06 - 2013) Manuelle und automatische Bestimmung der Geschwindig-

keit und des Volumenstromes in Abgaskanälen – Manuelles

Referenzverfahren

Müller-BBM-Prüfanweisungen 16-1Z02

4.1.2 Statischer Druck im Abgaskamin

siehe Abschnitt 4.1.1

4.1.3 Luftdruck in Höhe der Probenahmestelle

Messverfahren Digitalbarometer

Prüfmittel (Hersteller/Typ/Nummer) siehe Anlage 1, Prüfmittelkatalog, Messkomponente patm

4.1.4 Abgastemperatur

Messverfahren Thermospannung, NiCr-Ni-Thermoelement

Prüfmittel (Hersteller/Typ/Nummer) siehe Anlage 1, Prüfmittelkatalog, Messkomponente T

Erfassung kontinuierlich in einem repräsentativen Messpunkt mit

elektronischer Dokumentation

4.1.5 Wasserdampfanteil im Abgas (Abgasfeuchte)

Messverfahren gravimetrische Differenzmethode

Prüfmittel (Hersteller/Typ/Nummer) siehe Anlage 1, Prüfmittelkatalog, Messkomponente H₂O

DIN EN 14790 (05 - 2017) Emissionen aus stationären Quellen – Bestimmung von

Wasserdampf in Kanälen – Standardreferenzverfahren

Müller-BBM-Prüfanweisungen 16-1Z04

Probenahme Partikelabscheidung/beheizte Probenahme/Kondensation

mit gekühltem destilliertem Wasser und Adsorption an

Silikagel/Gasprobennehmer

Probenahmesystem siehe Anlage 1, Prüfmittelkatalog, Messkomponente H₂O

Waage siehe Anlage 1, Prüfmittelkatalog, Messkomponente H₂O

4.1.6 Abgasdichte

berechnet gemäß VDI 2066, Blatt 1, Pos. 8.5 unter Be-

rücksichtigung der Abgasbestandteile an

Sauerstoff (O₂), Kohlendioxid (CO₂)

Luftstickstoff (N₂)

Abgasfeuchte (Wasserdampfanteil im Abgas)

sowie der Abgastemperatur und der Druckverhältnisse im

Kanal

4.1.7 Abgasverdünnung

entfällt

4.2 Kontinuierliche Messverfahren

4.2.1 Messobjekte

Sauerstoff (O₂)

Kohlendioxid (CO₂)

Distickstoffmonoxid (N2O)

4.2.2 Messverfahren

O₂ magnetische Suszeptibilität, DIN EN 14789 (05 - 2017)

CO₂ NDIR-Spektrometrie, in Anlehnung an DIN EN 15058

(05 - 2017)

 N_2O NDIR-Spektrometrie, DIN EN 21258 (10 - 2010)

Müller-BBM-Prüfanweisungen 16-1A09 (CO₂, N₂O); 16-1A10 (O₂)

4.2.3 Analysatoren

O₂ (Hersteller/Typ/Nummer/...) siehe Anlage 1, Prüfmittelkatalog, Messkomponente O₂

CO₂ (Hersteller/Typ/Nummer/...) siehe Anlage 1, Prüfmittelkatalog, Messkomponente CO₂

N₂O (Hersteller/Typ/Nummer/...) siehe Anlage 1, Prüfmittelkatalog, Messkomponente N₂O

4.2.4 Eingestellter Messbereich

N₂O 0... 600 ppm

4.2.5 Messplatzaufbau

Entnahmesonde Edelstahl, beheizt auf Abgastemperatur, Länge 0,5 m

Partikelfilter Quarzwatte gestopft im Filtergehäuse aus Titan,

innenliegend, abgasbeheizt

Probegasleitung vor Gasaufbereitung Länge 10 m, PTFE-Leitung, beheizt auf 180 °C

Probegasleitung nach Gasaufbereitung Länge ca. 1 m, PTFE-Leitung, unbeheizt

Werkstoff der gasführenden Teile Edelstahl, Titan, PTFE, Glas

Messgasaufbereitung Messgaskühler

Bauart Peltierkühler (Bauart M+C Products) mit Feinstaubfilter und

Feuchteüberwachung

Temperatur geregelt auf 4 °C

Trockenmittel nicht vorhanden

Messgasdurchfluss 0,06 m³/h

4.2.6 Überprüfung der Gerätekennlinie

Prüfgas	Kohlendioxid CO ₂	Distickstoffoxid N₂O
Hersteller	Air Liquide	Air Liquide
Flaschennummer	D0WGLWM	D3RLUCN
Konzentration	15,02 Vol%	156 ppm
Rest	N_2	synth. Luft
Analysentoleranz	± 2 %	± 2 %
zertifiziert	Hersteller	Hersteller
Datum	10.01.2020	12.12.2019
Stabilitätsgarantie	36 Monate	36 Monate
Garantiezeit eingehalten	ja	ja

Nullgas Stickstoff

Prüfgas O₂ Umgebungsluft (20,95 Vol.-%)

Überprüfung des Zertifikates mit DKD-zertifizierten Prüfgasen gemäß Müller-BBM

Arbeitsanweisungen

Aufgabe durch das gesamte Probenahmesystem

4.2.7 90 % Einstellzeit des gesamten Messaufbaus

ca. 40 s (ermittelt durch druckfreie Aufgabe von Prüfgas an der Entnahmesonde)

4.2.8 Erfassung/Registrierung der Messwerte

Registrierung kontinuierlich mit einem Datenerfassungs- und Auswertesystem

Hersteller/Typ Kirsten Controlsystems GmbH, PC-gekoppelt mit 32-bit AD-Wandler

Software Trendows

4.2.9 Maßnahmen zur Qualitätssicherung

Regelmäßige Durchführung von Funktionskontrollen nach DIN/EN 14181, Überprüfung der eingesetzten Prüfgase durch Vergleich mit DKD-zertifizierten Gasen, Qualitätssicherung nach DIN/EN 15058, 14792, 14789 (Unsicherheitsbilanz), regelmäßige Teilnahme an Ringversuchen

QM-System gemäß DIN EN ISO/IEC 17025, Kalibrierungen gemäß Qualitätsmanagement Müller-BBM

Dichtigkeitsprüfung der Probenahmeeinrichtung Überwachung der Sauerstoffkonzentration

Durchflusskontrolle

Messunsicherheit siehe 6.3

ELR/MNR

4.3 Diskontinuierliche Messverfahren

4.3.1 Gas- und dampfförmige Emissionen

4.3.1.1 Gasförmige anorganische Fluorverbindungen (angegeben als HF)

4.3.1.1.1 Messverfahren

VDI 2470, Blatt 1 (10 – 1975)

Messung gasförmiger Emissionen; Messen gasförmiger

Fluorverbindungen; Absorptions-Verfahren

DIN EN 17340 (E) (12 – 2018) Emissionen aus stationären Quellen – Bestimmung der

Massenkonzentration fluorierter Verbindungen, angegeben

als HF - Standardreferenzverfahren

Müller-BBM-Prüfanweisungen 16-1A02; 16-2A02

4.3.1.1.2 Messplatzaufbau

Aufbau der Probenahmeeinrichtung Partikelabscheidung/beheizte Probenahme/zweistufige

Absorption/Gasprobennehmer

Entnahmesonde Titan, beheizt auf 190 °C, Länge 1,2 m, mit beheiztem

Verteiler für weitere Messparameter

Partikelfilter Planfilter im Filtergehäuse aus Titan,

außenliegend, beheizt auf 190 °C,

Material: Quarzfaser

Probegasleitung entfällt

Werkstoff der gasführenden Teile Titan, Glas

Ab-/Adsorptionseinrichtung zwei Muenke-Waschflaschen in Reihe, dritte Waschflasche

als Tropfenfänger

Sorptionsmittel 0,1 n Natronlauge

Sorptionsmittelmenge 30 ml je Waschflasche

Probenahmesystem siehe Anlage 1, Prüfmittelkatalog, Messkomponente HF

eingestellter Durchfluss ca. 0,12 m³/h

ELR/MNR

Abstand Sondenöffnung/Abscheideelement ca. 1,4 m

Probentransfer ungekühlt in 50-ml-PE-Gefäßen

Standzeit der Proben max. 6 Tage (Analyse am 28.09.2020)

Beteiligung eines Fremdlabors keine

4.3.1.1.3 Analytische Bestimmung

Beschreibung des Analysenverfahrens Bestimmung des Fluoridgehaltes mittels ionensensitiver

Elektrode

Aufarbeitung des Probenmaterials Einstellung pH 5-6 mittels Salzsäure, Zugabe von

Citratpufferlösung (pH 5,8)

Analysengeräte (Hersteller/Typ) Fluorid-Elektrode Mettler Toledo perfectION

pH-Elektrode Mettler Toledo InLab Micro Pro-ISM

Standards Natriumfluorid-Lösung, Standardkalibrierverfahren

//S-MUC-FS01/ALLEFIRMEN/W/PROJ/158/M158/37/M158037_02_BER_1D.DOCX:27. 11. 2020

4.3.1.1.4 Verfahrenskenngrößen

Einfluss von Begleitstoffen (Querempfindlichkeit) Einige Schwermetalle wie Cd, Zn, Ag, Ni, Cu, Fe und Hg

komplexieren das Fluorid-Ion und können zu Minderbe-

funden führen.

absolute Bestimmungsgrenze 0,003 mg/Probe

relative Bestimmungsgrenze 0,06 mg/m³ bei 0,05 Nm³ Probegasvolumen

Analysenunsicherheit 2,0 % vom Messwert

4.3.1.1.5 Maßnahmen zur Qualitätssicherung

Doppelbestimmungen, Blindwertbestimmungen, regelmäßige Teilnahme an Ringversuchen

QM-System gemäß DIN EN ISO/IEC 17025, Kalibrierungen gemäß Qualitätsmanagement Müller-BBM

Dichtigkeitsprüfung der Probenahmeeinrichtung

Bestimmung der Leckrate bei verschlossener

Sondenöffnung

Messunsicherheit siehe 6.3

4.3.1.2 Cyanwasserstoff (angegeben als HCN)

4.3.1.2.1 Messverfahren

IFA 6725 (11 – 2012) Absorptionsverfahren, Bestimmung des Cyanidgehaltes

mittels ionensensitiver Elektrode

Müller-BBM-Prüfanweisungen 16-1A13; 16-2A13

4.3.1.2.2 Messplatzaufbau

Aufbau der Probenahmeeinrichtung Partikelabscheidung/beheizte Probenahme/zweistufige

Absorption/Gasprobennehmer

Entnahmesonde Titan, beheizt auf 190 °C, Länge 1,2 m, mit beheiztem

Verteiler für weitere Messparameter

Partikelfilter Planfilter im Filtergehäuse aus Titan,

außenliegend, beheizt auf 190 °C,

Material: Quarzfaser

Probegasleitung entfällt

Werkstoff der gasführenden Teile Edelstahl, Titan, Glas

Ab-/Adsorptionseinrichtung zwei Muenke-Waschflaschen in Reihe, dritte Waschflasche

als Tropfenfänger

Sorptionsmittel 0,1 n Natronlauge

Sorptionsmittelmenge 30 ml je Waschflasche

Probenahmesystem siehe Anlage 1, Prüfmittelkatalog, Messkomponente HCN

eingestellter Durchfluss ca. 0,12 m³/h
Abstand Sondenöffnung/Abscheideelement ca. 1,4 m

ELR/MNR

Probentransfer ungekühlt in 50-ml-PE-Gefäßen

Standzeit der Proben max. 10 Tage (Analyse am 02.10.2020)

Beteiligung eines Fremdlabors keine

//S-MUC-FS01/ALLEFIRMEN/M/PROJ/158/M158037/M158037_02_BER_1D.DOCX:27. 11. 2020

4.3.1.2.3 Analytische Bestimmung

Beschreibung des Analysenverfahrens Bestimmung des Cyanidgehaltes mittels ionensensitiver

Elektrode

Aufarbeitung des Probenmaterials nicht erforderlich, Analytik direkt aus der Probe

Analysengeräte (Hersteller/Typ) Cyanid-Elektrode WTW CN 500/

Referenzelektrode Methrom 6.0750.100

Standards Kaliumzinkcyanid-Lösung, Standardkalibrierverfahren

4.3.1.2.4 Verfahrenskenngrößen

Einfluss von Begleitstoffen (Querempfindlichkeit)

Sulfide (müssen vor der Analyse ausgefällt werden)

absolute Bestimmungsgrenze 0,003 mg/Probe

relative Bestimmungsgrenze 0,05 mg/m³ bei 0,06 Nm³ Probegasvolumen

Analysenunsicherheit 5,0 % vom Messwert

4.3.1.2.5 Maßnahmen zur Qualitätssicherung

Doppelbestimmungen, Blindwertbestimmungen, regelmäßige Teilnahme an Ringversuchen

QM-System gemäß DIN EN ISO/IEC 17025, Kalibrierungen gemäß Qualitätsmanagement Müller-BBM

Dichtigkeitsprüfung der Probenahmeeinrichtung Überprüfung der Leckrate bei verschlossener

Sondenöffnung

Messunsicherheit siehe 6.3

4.3.1.3 Quecksilber

4.3.1.3.1 Messverfahren

DIN EN 13211 (06 – 2001) DIN EN 13211 (06 – 2005)

Berichtigung zu DIN EN 13211:2001-06

Emissionen aus stationären Quellen – Manuelles Verfahren zur Bestimmung der Gesamtquecksilber-Konzentration

DIN EN 1483 (08 – 1997) Referenzverfahren AnalytikUV-Fotometrie

Müller-BBM-Prüfanweisungen 16-1D04; 16-2D04

4.3.1.3.2 Messplatzaufbau

Aufbau der Probenahmeeinrichtung Partikelabscheidung/beheizte Probenahme/zweistufige

Absorption/Gasprobennehmer

Durchführung der Probenahme nicht isokinetisch, da Hg partikelförmig < 1 µg/m³

Entnahmesonde Titan, beheizt auf 190 °C, Länge 1,2 m, mit beheiztem

Verteiler für weitere Messparameter

Partikelfilter Planfilter im Filtergehäuse aus Titan,

außenliegend, beheizt auf 190 °C,

Material: Quarzfaser

Probegasleitung entfällt

Werkstoff der gasführenden Teile Titan, Glas

M158037/02 Version 1 27. November 2020

//S-MUC-FS01/ALLEFIRMEN/W/PROJ/158/M158037/M158037_02_BER_1D.DOCX:27. 11. 2020

Ab-/Adsorptionseinrichtung zwei Muenke-Waschflaschen in Reihe, dritte Waschflasche

als Tropfenfänger

Sorptionsmittel schwefelsaure KMnO₄-Lösung

Sorptionsmittelmenge 30 ml je Waschflasche

Probenahmesystem siehe Anlage 1, Prüfmittelkatalog, Messkomponente Hg

eingestellter Durchfluss ca. 0,12 m³/h

Abstand Sondenöffnung/Abscheideelement ca. 1,4 m

Probentransfer Planfilter in Rundbehältern aus PE

Absorptionslösungen ungekühlt in 250-ml-Duranglas-

Flaschen

Standzeit der Proben max. 8 Tage (Analyse am 30.09.2020)

Beteiligung eines Fremdlabors keine

4.3.1.3.3 Analytische Bestimmung

Beschreibung des Analysenverfahrens Bestimmung des Hg-Gehaltes mittels UV-Fotometrie mit

Mess- und Referenzstrahl zur Lampenregelung

Aufarbeitung der Filter Mikrowellendruckaufschluss mit HNO₃/H₂O₂ und Flusssäure

Aufarbeitung der Absorptionslösungen nach Entfärbung mit Hydroxylammoniumchlorid und Re-

duktion durch Zugabe von Zinn(II)-chloridlösung direkt zur

Analyse

Analysengeräte (Typ/Hersteller) Quecksilber-Analysator Typ RA-4300, Nippon Instruments

Cooperation

Standards (Hg²⁺) Quecksilberchlorid-Lösung, Standardkalibrierverfahren

4.3.1.3.4 Verfahrenskenngrößen

Einfluss von Begleitstoffen (Querempfindlichkeit) keine bekannt absolute Bestimmungsgrenze 0,010 µg/Probe

relative Bestimmungsgrenze 0,2 µg/m³ bei 0,05 Nm³ (Absorptionslösung)

0,01 µg/m³ bei 1 Nm³ (Planfilter)

Analysenunsicherheit 4,0 % vom Messwert

4.3.1.3.5 Maßnahmen zur Qualitätssicherung

Doppelbestimmungen, Blindwertbestimmungen, regelmäßige Teilnahme an Ringversuchen

QM-System gemäß DIN EN ISO/IEC 17025, Kalibrierungen gemäß Qualitätsmanagement Müller-BBM

Dichtigkeitsprüfung der Probenahmeeinrichtung Überprüfung der Leckrate bei verschlossener

Sondenöffnung

Messunsicherheit siehe 6.3

4.3.2 Partikelförmige Emissionen

4.3.2.1 Staubinhaltstoffe und an Staub adsorbierte chemische Verbindungen (Metalle, Halbmetalle und ihre Verbindungen) einschließlich filtergängiger Anteile

4.3.2.1.1 Messverfahren

DIN EN 14385 (05 – 2004) Emissionen aus stationären Quellen – Bestimmung der

Gesamtemission von As, Cd, Cr, Co, Cu, Mn, Ni, Pb, Sb, Tl

und V

VDI 2268, Blatt 1 – 4 Beschreibung des Aufschlussverfahrens

Müller-BBM-Prüfanweisungen 16-1D03; 16-2D03

Durchführung der Probenahme isokinetische Entnahme eines staubbeladenen Teilgas-

volumens aus dem Hauptvolumenstrom und Abscheidung des enthaltenen Staubes und filtergängiger Anteile durch

Rückhaltesysteme

4.3.2.1.2 Messplatzaufbau

Probenahme nach dem Hauptstromverfahren

Aufbau der Probenahmeeinrichtung Absaugdüse, Partikelfilter, beheizte Lanze, 2-stufige

Absorption, Kondensatgefäß mit Trockenturm, Pumpe mit

Gasuhr und Temperaturfühler

Entnahmesonde Titan, beheizt auf 190 °C, Länge 1,2 m

Rückhaltesystem für partikelförmige Stoffe

Partikelfilter Planfilter im Filtergehäuse aus Titan, innenliegend,

abgasbeheizt, entgegen der Strömungsrichtung positioniert

Abscheidemedium (Typ/Durchmesser/Hersteller) Quarzfaser-Planfilter / Typ MK 360

Blattdurchmesser 45 mm Munktell Filter AB, Schweden

ohne organische Bindemittel, hohe Schwermetallreinheit

Rückhaltesystem für filtergängige Stoffe

Absorptionseinrichtung zwei parallele Waschflaschenstraßen mit je 2 Impinger-

Waschflaschen und einem Tropfenabscheider in Reihe

Sorptionsmittel verdünnte HNO₃-Lösung mit H₂O₂-Zusatz

Sorptionsmittelmenge 40 ml je Impingerwaschflasche

Abstand Sondenöffnung/Abscheideelement ca. 1,4 m

Spüllösung 5-%ige HNO₃ (zur Rückgewinnung von Ablagerungen vor

dem Partikelfilter und von filtergängigen Anteilen zwischen

Partikelfilter und erster Absorptionsstufe)

Probentransfer Planfilter in Rundbehältern aus PE oder Polystyrol; Sonden-

spüllösung und Absorptionslösungen ungekühlt in PE-

Gefäßen

Probenahmesystem siehe Anlage 1, Prüfmittelkatalog, Messkomponente SIS

eingestellter Durchfluss gemäß Isokinetik

Standzeit der Proben max. 13 Tage (Analyse am 01. und 05.10.2020)

Beteiligung eines Fremdlabors keine

ELR/MNR

4.3.2.1.3 Aufbereitung und Auswertung der Messfilter und der Absorptionslösungen

Messfilter (Aufarbeitung des Probenmaterials)

Mikrowellendruckaufschluss mit HNO₃/H₂O₂ und Flusssäure

Absorptionslösung Vereinigung der Absorptionslösungen (ohne weitere

Probenaufbereitung) mit den Filteraufschlüssen und anschließende Vermessung der Proben (Hauptstromver-

fahren)

Beschreibung des Analysenverfahrens Bestimmung von Schwermetallen mittels ICP und MS-

Detektion

Analysengeräte (Hersteller/Typ) ICP-MS (Thermo / ICAP RQ) (PMV11478)

Analysebedingungen Hot Plasma (ca. 8.000 K)

Standard 6-Punkt-Kalibrierung der Analyten mit geeignetem, massen-

abhängigem internen Standard (Rhodium, Scandium,

Ruthenium, Germanium, Rhenium)

4.3.2.1.4 Verfahrenskenngrößen

Einfluss von Begleitstoffen (Querempfindlichkeiten)

Da die Detektion der Elemente durch deren charakteris-

tische Massen erfolgt, können Querempfindlichkeiten weit-

gehend ausgeschlossen werden.

absolute Bestimmungsgrenze Cd/Tl: 0,0005 mg/l

weitere Elemente 0,005 mg/l

relative Bestimmungsgrenze Cd/Tl: 0,025 µg/m³

weitere Elemente: 0,25 µg/m³

bei 50 ml Aufschlusslösung und 1 m³ Probegasvolumen

bzw.

Cd/Tl: 0,1 µg/m³

weitere Elemente: 1,0 µg/m³

bei 100 ml Absorptionslösung und 1 m³ Probegasvolumen

Analysenunsicherheit 3,9 % (bestimmt aus Kontrollstandards und Doppelbe-

stimmungen)

4.3.2.1.5 Maßnahmen zur Qualitätssicherung

Blindwertbestimmungen

Element	Planfilter M407	Absorptionslösung BW A	
Cd	< 0,0005 mg/l	< 0,0005 mg/l	
TI	< 0,0005 mg/l	< 0,0005 mg/l	
Sb	< 0,005 mg/l	< 0,005 mg/l	
As	< 0,005 mg/l	< 0,005 mg/l	
Pb	< 0,005 mg/l	< 0,005 mg/l	
Cr	< 0,005 mg/l	< 0,005 mg/l	
Co	< 0,005 mg/l	< 0,005 mg/l	
Cu	< 0,005 mg/l	< 0,005 mg/l	
Mn	< 0,005 mg/l	< 0,005 mg/l	
Ni	< 0,005 mg/l	< 0,005 mg/l	
V	< 0,005 mg/l	< 0,005 mg/l	
Sn	< 0,005 mg/l	< 0,005 mg/l	

\\S-MUC-FS01\ALLEFIRMEN\\M\PROJ\158\\M158037\\M158037\\D_DCX:27.11.2020

Doppelbestimmungen, Blindwertbestimmungen, regelmäßige Teilnahme an Ringversuchen

QM-System gemäß DIN EN ISO/IEC 17025, Kalibrierungen gemäß Qualitätsmanagement Müller-BBM

Dichtigkeitsprüfung der Probenahmeeinrichtung Überprüfung der Leckrate bei verschlossener

Sondenöffnung

Messunsicherheit siehe 6.3

4.3.3 Besondere hochtoxische Abgasinhaltsstoffe

4.3.3.1 Polychlorierte Dibenzodioxine und -furane (PCDD/PCDF) und dioxinähnliche polychlorierte Biphenyle (dl-PCB)

4.3.3.1.1 Messverfahren

DIN EN 1948-1 (06 – 2006) Emissionen aus stationären Quellen – Bestimmung der

Massenkonzentration von PCDD/PCDF und dioxinähnlichen PCB - Teil 1: Probenahme von PCDD/PCDF

DIN EN 1948-4 (03-2014) Emissionen aus stationären Quellen - Bestimmung der

Massenkonzentration von PCDD/PCDF und dioxinähnlichen PCB - Teil 4: Probenahme und Analyse dioxin-

ähnlicher PCB

Müller-BBM-Prüfanweisungen 16-1M01; Variante A

Durchführung der Probenahme Probenahme mit gekühltem Absaugrohr; isokinetische Ab-

saugung eines Teilstromes; Abkühlung des Abgases und Kondensation der Abgasfeuchte; Abscheidung von Aerosolen und Partikeln auf einem Planfilter und Adsorption or-

ganischer Verbindungen an XAD

4.3.3.1.2 Messplatzaufbau

Aufbau der Probenahmeeinrichtung wasserkühlbare Sonde; Kondensatgefäß; ggf. Tropfenab-

scheider; XAD-Kartusche; Pumpe; Gasuhr mit Temperatur-

fühler

Entnahmesonde wassergekühlte Titansonde mit auswechselbarem

Duranglas- bzw. Quarzglasrohr, Länge 2 m

Partikelfilter Quarzfaserplanfilter vor der letzten Adsorptionsstufe

Absorptionseinrichtung Kondensatgefäß mit Tauchrohr (1 ... 3 Liter), Tropfen-

abscheider (bei hoher Abgasfeuchte und heißen Abgasen) und nachgeschalteter Kartusche mit Feststoffadsorbens

Sorptionsmittel und -menge mindestens 30 g gereinigtes XAD-2, dotiert mit ¹³C₁₂-

markiertem PCDD/F- und PCB-Probenahmestandard

gemäß EN 1948-1 und -4

Probenahmesystem siehe Anlage 1, Prüfmittelkatalog, Messkomponente

PCDD/F

eingestellter Durchfluss ca. 1,3 m³/h (gemäß Isokinetik)

Abstand zwischen Ansaugöffnung der Entnahmesonde

und dem Sorptionsmittel

ca. 2 m

\\S-MUC-FS01\ALLEFIRMEN\\M\PROJ\158\\M158037\M158037_\O2_BER_1D.DOCX:27. 11. 2020

4.3.3.1.3 Probenahme und Nachbehandlung

Nachbehandlung Auskochen bzw. Spülen der Probenahmeapparatur mit

destilliertem H2O, Toluol und Aceton

Probentransfer lichtgeschützt, Kondensat und Spüllösung in Braunglas-

flaschen

Zeitraum zwischen Probenahme und Probenaufbereitung max. 9 Tage

Zeitraum der Analyse 01. bis 13.10.2020

Beteiligung eines Fremdlabors mas | münster analytical solutions gmbh, 48149 Münster

4.3.3.1.4 Analytische Bestimmung

Richtlinie DIN EN 1948-2/-3/-4 (06 – 2006/06 – 2006/03-2014)

Beschreibung des Analysenverfahrens Bestimmung der PCDD-/PCDF- und dl-PCB-Gehalte mittels

hochauflösender HRGC/HRMS

Aufarbeitung des Probenmaterials Extraktion der festen Phasen (XAD-2 nach Trocknung,

Quarzwatte und Planfilter nach HCl-Behandlung und Trocknung) mit Toluol/Aceton; nach Zugabe von ¹³C₁₂-markierten PCDD-/PCDF- und PCB-Extraktionsstandards, Ausschütteln der flüssigen Phase mit Toluol; Trocknen und Einengen der vereinigten Toluollösungen; säulenchromatographische Reinigung unter Trennung von PCDD/F und PCB; Zugabe von ¹³C₁₂-markierten PCDD/F und PCB Wiederfindungsstandards zu den Messlösungen und

Einengen auf geeignete Endvolumina

Auswertung Getrennte Analyse der PCDD/F und PCB; jeweils Injektion

am GC, Analyse mittels HRMS, Auswertung nach

Retentionszeiten und Isotopenverhältnis-Vergleich, Angabe der PCDD/F und dI-PCB als Konzentrationswerte und daraus berechnete Toxische Equivalente (WHO-TEQ 2005),

berechnet gemäß EN 1948 und 17. BlmSchV

Analysengeräte (Hersteller/Typ) Kaltaufgabesystem (Thermo Scientific PTV)

Gaschromatograph (Thermo Scientific Trace GC Ultra)
Massenspektrometer (Thermo Scientific DFS oder MAT 95

XP)

Trennsäulen 60 m DB-5 MS/ggf. 60 m RTX 2330

4.3.3.1.5 Verfahrenskenngrößen

Standards

Einfluss von Begleitstoffen (Querempfindlichkeiten) wird durch Probenaufbereitung minimiert

Bestimmungsgrenze bei 10 m³ Probenahmevolumen 0,0001 ng/m³ für 2,3,7,8-TetraCDD und 0,0025 ng/m³ für das

PCB 126

bei den vorliegenden Probenahmerandbedingungen und der

verwendeten Analytik

¹³C₁₂-Standards gemäß EN1948

relative erweiterte Messunsicherheit Die Messunsicherheiten für die o. g. analytischen Verfahren

wurden nach DIN ISO 11352_2013-03 abgeleitet. Sie stellen jeweils die erweiterte Unsicherheit dar und wurden mit einem Erweiterungsfaktor von k = 2 erhalten. Dies entspricht einem Vertrauensniveau von ungefähr 95 %.

PCDD/F (I-TEQ): 23,9 %
PCDD/F (WHO2005-TEQ): 23,5 %
PCB (WHO2005-TEQ): 28,6 %
PCDD/F-PCB (WHO2005-TEQ): 37,0 %

M158037/02 Version 1 27. November 2020

4.3.3.1.6 Maßnahmen zur Qualitätssicherung

Blindwertbestimmungen und Bestimmung von Wiederfindungsraten durch Standardzugabe

QM-System gemäß DIN EN ISO/IEC 17025, Kalibrierungen gemäß Qualitätsmanagement Müller-BBM

Akkreditierung des Labors, regelmäßige Teilnahme an Ringversuchen für die o. g. Parameter

Dichtigkeitsprüfung der Probenahmeeinrichtung Bestimmung der Leckrate bei verschlossener

Probenahmeapparatur

Messunsicherheit siehe 6.3

Nachfolgend werden die Wiederfindungsraten (nach DIN EN 1948) der internen PCDD/F- und PCB-Standards aufgeführt, mit welchen die XAD-Adsorptionsstufe gespikt wurde. Bei korrekter Probenahme müssen die Wiederfindungsraten größer 50 % liegen, andernfalls sind die Proben zu verwerfen.

PCDD/F-Wiederfindungsraten

Messung (Datum/Uhrzeit) Standard	22.09.2020 10:19-16:19	23.09.2020 10:30-16:30	24.09.2020 08:50-14:50	Blindwert
¹³ C ₁₂ -1,2,3,7,8-PeCDF	97 %	104 %	103 %	104 %
¹³ C ₁₂ -1,2,3,7,8,9-HxCDF	98 %	107 %	96 %	111 %
¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF	92 %	99 %	94 %	106 %

PCB-Wiederfindungsraten

Messung (Datum/Uhrzeit) Standard	22.09.2020 10:19-16:19	23.09.2020 10:30-16:30	24.09.2020 08:50-14:50	Blindwert
¹³ C ₁₂ -PCB 60	110 %	114 %	104 %	103 %
¹³ C ₁₂ -PCB 127	73 %	70 %	72 %	77 %
¹³ C ₁₂ -PCB 159	102 %	104 %	100 %	97 %

4.3.3.2 Polyzyklische aromatische Kohlenwasserstoffe (PAK) Benzo(a)pyren

4.3.3.2.1 Messverfahren

DIN EN 1948-1 (06 - 2006) Emissionen aus stationären Quellen – Bestimmung der

Massenkonzentration von PCDD/PCDF und dioxinähnlichen PCB - Teil 1: Probenahme von PCDD/PCDF

VDI 3874 (12 – 2006) Messen von Emissionen - Messen von polyzyklischen

aromatischen Kohlenwasserstoffen (PAH) - GC/MS-

Verfahren

Bestimmung der Massenkonzentration von PAK sowie MAS_PA016 (09-2016)

Dibenzofuran und Dibenzodioxin in Emissionsproben

16-2101

Müller-BBM-Prüfanweisungen

Messplatzaufbau

siehe Abschnitt 4.3.3.1.2

4.3.3.2.2

\(\)\S-MUC-FS01\ALLEFIRMEN\\\M\PROJ\158\\\M158037\\M158037_02_BER_1D.DOCX:27. 11. 2020

4.3.3.2.3 Probenahme und Nachbehandlung

Nachbehandlung Auskochen bzw. Spülen der Probenahmeapparatur mit

destilliertem H2O, Toluol und Aceton

Probentransfer lichtgeschützt, Kondensat und Spüllösung in Braunglas-

flaschen

Zeitraum zwischen Probenahme und Probenaufbereitung max. 9 Tage

Zeitraum der Analyse 01. bis 13.10.2020

Beteiligung eines Fremdlabors mas | münster analytical solutions gmbh, 48149 Münster

(Probenaufbereitung, Extraktion und Analytik)

4.3.3.2.4 Analytische Bestimmung

Beschreibung des Analysenverfahrens Bestimmung des PAK-Gehaltes mittels niedrigauflösender

GC/LRMS

Aufarbeitung des Probenmaterials Ein Teil des Toluol-Extraktes (i.d.R. 10 %) der Probe wird

nach Zugabe von internen deuterierten Standards an Kieselgel gereinigt. Zugabe eines weiteren deuterierten PAK als Wiederfindungsstandard und Einengen auf das ge-

eignete Endvolumen

Analysengeräte (Hersteller/Typ) Thermo Scientific/DSQ (GC/LRMS)

Trennsäulen DB-5MS (60 m; 0,25 mm ID; 0,25 µm Filmdicke)

Standards Lösung der 16 PAK als Kalibrierstandard

Lösung der 16 PAK deuteriert als interner Standard

4.3.3.2.5 Verfahrenskenngrößen

Einfluss von Begleitstoffen (Querempfindlichkeiten) wird durch Probenaufbereitung minimiert

Die Methode ist hochselektiv, bei einigen PAK treten jedoch

Co-Elutionen auf.

Bestimmungsgrenze bei 10 m³ Probenahmevolumen für Benzo(a)pyren i.d.R. bei 0,001 μg/m³ (Phenanthren

 $0,005 \mu g/m^3$, Naphthalin $0,1 \mu g/m^3$)

relative erweiterte Messunsicherheit Die Messunsicherheiten für die o. g. analytischen Verfahren

wurden nach DIN ISO 11352_2013-03 abgeleitet. Sie stellen jeweils die erweiterte Unsicherheit dar und wurden mit einem Erweiterungsfaktor von k=2 erhalten. Dies entspricht einem Vertrauensniveau von ungefähr 95 %.

Benzo(a)pyren: 24,0 % 16 EPA-PAK: 20.8 %

4.3.3.2.6 Maßnahmen zur Qualitätssicherung

Blindwertbestimmungen und Bestimmung von Wiederfindungsraten durch Standardzugabe

QM-System gemäß DIN EN ISO/IEC 17025, Kalibrierungen gemäß Qualitätsmanagement Müller-BBM

Akkreditierung des Labors, regelmäßige Teilnahme an Ringversuchen für die o. g. Parameter

Dichtigkeitsprüfung der Probenahmeeinrichtung Bestimmung der Leckrate bei verschlossener

Probenahmeapparatur

Messunsicherheit siehe 6.3

4.3.4 Geruchsemissionen

entfällt

Betriebszustand der Anlage während der Messungen

Datenbasis: Betreiberangaben und Erhebungen durch Müller-BBM

5.1 **Produktionsanlage**

Datum		22.09.2020	23.09.2020	24.09.2020
Messzeitraum	Uhrzeit	10:00 – 17:00	10.00 – 17:00	8.00 – 15.00
Betriebsweise		kontinuierlich	kontinuierlich	kontinuierlich
Betriebsart		Volllast	Volllast	Volllast
Lastfall	%	95 - 106	95 - 106	95 - 106
Feuerraumtemperatur	°C	1200	1192	1197
Dampfmenge	t/h	23 – 24	23 – 24	23 – 24
Erdgasverbrauch Brenner	m³/h	0	0	0
O ₂ - Gehalt Rauchgas	Vol %	8,2	8,15	8,2
Abweichung von genehmigter Betriebsweise		nein	nein	nein
besondere Vorkommnisse		nein	nein	nein

5.2 Abgasreinigungsanlagen

Gewebefilter

Datum		22.09.2020	23.09.2020	24.09.2020
Messzeitraum	Uhrzeit	10:00 – 17:00	10.00 – 17:00	8.00 – 15.00
Betriebsart		normal	normal	normal
Filterdruck	mbar	17	17	17
Austragstemperatur	°C	125	125	130
letzte Wartung		05/2020	05/2020	05/2020
Additivzugaben				
Datum		22.09.2020	23.09.2020	24.09.2020
Messzeitraum	Uhrzeit	10:00 – 17:00	10.00 – 17:00	8.00 – 15.00
Kalkzugabe	%	0 - 15	0 - 15	0 - 15
Harnstoffzugabe	l/h	12	15	15

gemäßer Betriebsweise

besondere Vorkommnisse

keine

6 Zusammenstellung der Messergebnisse und Diskussion

6.1 Bewertung der Betriebsbedingungen während der Messungen

Zum Zeitpunkt der Messungen wurde die Anlage bestimmungsgemäß betrieben. Die Durchführung der Messungen erfolgte bei den unter Abschnitt 5.1 aufgeführten Betriebsgrößen. Pausenzeiten blieben unberücksichtigt. Unter diesen Bedingungen lag zum Messzeitpunkt sowohl eine repräsentative wie auch eine maximale Auslastung der Anlage vor.

Die Vorgabe der Ziffer 5.3.2.2 TA Luft nach Betriebsbedingungen mit höchster Emission war erfüllt.

6.2 Messergebnisse

Nachfolgend werden die wichtigsten Messergebnisse zusammengefasst. Wenn nicht anders angegeben, beziehen sich alle Konzentrationen auf das trockene Abgas im Normzustand.

Bei den Summenbildungen bleiben Einzelstoffe (Metalle, PCDD/F- und dl-PCB-Kongenere, Benzo(a)pyren), deren Konzentrationen unterhalb der jeweiligen Bestimmungsgrenze liegen, unberücksichtigt (für den Fall, dass alle in der Summe enthaltenen Einzelkomponenten unterhalb der jeweiligen Bestimmungsgrenze liegen, ergibt sich demzufolge für den Summenwert der Zahlenwert "Null").

Tabelle 6.2.1. Messergebnisse Abgasrandbedingungen.

Datum	Zeit	Р	٧	Т	H ₂ O	O ₂	dV/dt, Betrieb	dV/dt, N,f	dV/dt, N,tr
		hPa	m/s	°C	Vol.%	Vol.%	m³/h	m³/h,N,f	m³/h,N,tr
22.09.2020	08:45-09:00	955,4	13,9	130	13,6	8,4	63798	40758	35234
22.09.2020	10:19-16:19	955,4	13,6	128	13,2	8,2	61990	39779	34528
22.09.2020	12:04-12:36	955,4	13,0	128	12,9	8,3	59577	38241	33308
22.09.2020	14:32-15:02	955,4	13,6	129	12,9	8,2	62002	39732	34607
23.09.2020	10:30-16:30	950,4	14,4	129	13,3	8,9	65814	41951	36371
23.09.2020	12:12-12:44	950,4	14,2	127	12,6	8,3	65039	41591	36351
23.09.2020	12:01-12:31	950,4	14,1	120	12,6	8,2	64286	41922	36640
24.09.2020	08:50-14:50	948,4	14,4	135	13,8	8,4	65989	41311	35610
24.09.2020	09:08-09:40	948,4	14,3	137	13,4	8,4	65351	40699	35246
24.09.2020	09:39-10:09	948,4	14,3	137	13,4	8,4	65491	40778	35314
Р	Druck			Т	Temperati	ır	O ₂	Sauerstoff	
V	Strömungsgeso	hwindiake	it	H ₂ O	Abgasfeuc	chte	dV/dt	Volumenstrom	

Tabelle 6.2.2. Messergebnisse kontinuierliche Messparameter.

Komponente	N ₂ O
KOHIDOHEHLE	1120

Nr	Datum	Zeit	N_2O	O_2	N_2O	N_2O	Up	N_2O	Up
					1)	1)3)	2)3)	3)	2)3)
			mg/m³	Vol.%	mg/m³,N	mg/m³,N	mg/m³,N	kg/h	kg/h
1	22.09.2020	14:32-15:02	5,3	8,2	4,2	< 12,0	21,8	< 0,53	0,9
2	23.09.2020	12:01-12:31	14,0	8,2	10,9	< 12,0	30,8	< 0,56	1,4
3	24.09.2020	09:39-10:09	3,2	8,4	2,5	< 12,0	20,9	< 0,53	0,9
Mitte	elwert (Werte	kleiner Bestimn	nungsgrer	nze (BG) r	nit 0% der BG berücksichtigt)	0,00		0,00	
Max	imalwert					0,00		0,00	
Max	imalwert - er	weiterte Mess	unsicherl	neit		0		0	
Max	imalwert + ei	rweiterte Mess	unsicher	heit		31		1	
Gre	nzwert					-		-	

¹⁾ bezogen auf 11 Vol.% O₂

ELR/MNR

²⁾ Bestimmung der Messunsicherheit (Up): indirekt

³⁾ Rundung gemäß bundeseinheitlichem Mustermessbericht

Tabelle 6.2.3. Messergebnisse diskontinuierliche Messparameter.

Kon	nponente	HCN								
Nr	Datum	Zeit	HCN	O ₂	Volumen	HCN 1)	HCN 1)3)	Up 2)3)	HCN 3)	Up 2)3)
			mg/Probe	Vol.%	m³N	mg/m³,N	mg/m³,N	mg/m³,N	g/h	g/h
1	22.09.2020	14:32-15:02	0,00	8,2	0,052	0,05	< 0,05	0,01	< 2,21	0,7
2	23.09.2020	12:01-12:31	0,00	8,2	0,052	0,06	0,05	0,02	2,7	0,9
3	24.09.2020	09:39-10:09	0,01	8,4	0,052	0,18	0,1	0,04	7,9	1,9
Mitte	elwert (Werte	kleiner Bestim	mungsgren	ze (BG)	mit 0% de	er BG berücksichtigt)	0,07		3,5	
Max	imalwert		_				0,1		7,9	
Max	imalwert - er	weiterte Mess	sunsicherh	eit			0		6	
Max	Maximalwert + erweiterte Messunsicherheit								10	
Gre	Grenzwert								15	

- 1) bezogen auf 11 Vol.% O₂
- 2) Bestimmung der Messunsicherheit (Up): indirekt
- 3) Rundung gemäß bundeseinheitlichem Mustermessbericht

Kon	nponente	HF								
Nr	Datum	Zeit	HF mg/Probe	O ₂	y Volumen Z	HF 1) mg/m³.N	HF 1)3) mg/m³,N	Up 2)3) mg/m³,N	HF 3) g/h	Up 2)3) g/h
1	22.09.2020	14:32-15:02	0,00	8,2	0,052	0.00	< 0.05	0,01	< 1,73	0,3
2	23.09.2020	12:01-12:31	0,00	8,2	0,052	0,00	< 0.05	0,01	< 1,83	0,3
3	24.09.2020	09:39-10:09	0,00	8,4	0,052	0,00	< 0,05	0,01	< 1,76	0,3
Mitte	elwert (Werte	kleiner Bestimr	nungsgrenze	e (BG) m	it 0% de	BG berücksichtigt)	0,00		0,00	
Max	imalwert		- -			•	0,00		0,00	
Max	imalwert - er	weiterte Mess	unsicherhe	it			0		0	
Max	Maximalwert + erweiterte Messunsicherheit						0		0	
Gre	nzwert						1		-	

- 1) bezogen auf 11 Vol.% O₂ nur bei Überschreitung des Bezugssauerstoffgehaltes von 11 Vol.% O₂
- 2) Bestimmung der Messunsicherheit (Up): indirekt
- 3) Rundung gemäß bundeseinheitlichem Mustermessbericht

Kon	nponente	Hg								
Nr	Datum	Zeit	Hg µg/Probe	O ₂	Volumen Volumen	Hg 1) µg/m³,N	Hg 1)3) mg/m³,N	Up 2)3) mg/m³,N	Hg 3) mg/h	Up 2)3) mg/h
1	22.09.2020	14:32-15:02	0,00	8,2	0,048	0,00	< 0.0002	0,0000	< 6,92	1,3
2	23.09.2020	12:01-12:31	0,00	8,2	0,052	0,00	< 0,0002	0,0000	< 7,32	1,4
3	24.09.2020	09:39-10:09	0,00	8,4	0,053	0,00	< 0,0002	0,0000	< 7,06	1,4
Mitte	elwert (Werte	kleiner Bestimr	nungsgrenz	e (BG) r	nit 0% de	r BG berücksichtigt)	0,0000		0,00	
Max	imalwert			, ,		<u> </u>	0,0000		0,00	
Max	imalwert - er	weiterte Mess	unsicherhe	eit			0,00		0	
Max	imalwert + e	rweiterte Mess	sunsicherh	eit			0,00		1	
Gre	nzwert						0,03		-	

- 1) bezogen auf 11 Vol.% O₂ nur bei Überschreitung des Bezugssauerstoffgehaltes von 11 Vol.% O₂
- 2) Bestimmung der Messunsicherheit (Up): indirekt
- 3) Rundung gemäß bundeseinheitlichem Mustermessbericht

Tabelle 6.2.4. Messergebnisse partikelförmige Messparameter.

Schwermetalle (Cd, Tl) nach § 8 (1) 3, Anlage 1 a der 17. BlmSchV Komponente nach Anlage 1 a nach Anlage 1 Volumen Absaug-fehler Summe nach Anlage 1 Summe Summe Düse Nr Datum Zeit O_2 Up Up 1)3) 2)3) 3) 2)3) 1) Vol.% m^3N µg/m³,N mg/m³,N mg/m³,N g/h g/h 22.09.2020 12:04-12:36 8,3 0,745 8 0,0 0,0000 0,0000 0,000 0,000 0,820 8 0,000 2 23.09.2020 12-12-12-44 8,3 8 0.0 0,0000 0.0000 0,000 24.09.2020 09:08-09:40 8,4 0,782 8 5 0,0 0,0000 0,0000 0,000 0,000 Mittelwert (Werte kleiner Bestimmungsgrenze (BG) mit 0% der BG berücksichtigt) 0,0000 0,000 0,0000 0,000 Maximalwert Maximalwert - erweiterte Messunsicherheit 0,00 0,0 Maximalwert + erweiterte Messunsicherheit 0,00 0,0 Grenzwert 0,05

- 1) bezogen auf 11 Vol.% O₂ nur bei Überschreitung des Bezugssauerstoffgehaltes von 11 Vol.% O₂
- 2) Bestimmung der Messunsicherheit (Up): indirekt
- 3) Rundung gemäß bundeseinheitlichem Mustermessbericht

Komp	onente	Schwermetalle (SI	o, As, Pb, Cr,	Co, Cu,	Mn, Ni,	V, Sn) n	ach § 8 (1) 3,	Anlage 1 b	der 17. Bln	nSchV	
Nr	Datum	Zeit	O ₂ Vol.%	Nolumen M ³ N	Düse	Absaug- fehler	Summe nach (Anlage 1	Summe (S(1 b Anlage 1	Up 2)3)	Summe Summe nach Anlage 1	Up 2)3)
	22.09.2020	12:04-12:36	8,3	0.745	mm 8	6	μg/m³,N 10,4	0,01	mg/m³,N 0.000	g/h 0,34	g/h 0,02
2	23.09.2020	12:12-12:44	8,3	0.820	8	7	4,1	0,004	0,000	0,15	0,01
3	24.09.2020	09:08-09:40	8,4	0,782	8	5	4,1	0,004	0,000	0,14	0,01
Mittel	wert (Werte kl	einer Bestimmungsg	renze (BG) mi	t 0% der	BG beri	icksichtig	gt)	0,006		0,21	-
Maxir	nalwert		` ,			`		0,01		0,34	
Maxir	Maximalwert - erweiterte Messunsicherheit							0,0		0,3	
Maxir	Maximalwert + erweiterte Messunsicherheit							0,0		0,4	
Gren	renzwert							0,5		-	

- 1) bezogen auf 11 Vol.% O₂ nur bei Überschreitung des Bezugssauerstoffgehaltes von 11 Vol.% O₂
- 2) Bestimmung der Messunsicherheit (Up): indirekt
- 3) Rundung gemäß bundeseinheitlichem Mustermessbericht

Komponente	Stoffe nach § 8 (1) 3, Anlage 1 c der 17. BlmSchV

Nr	Datum	Zeit	O_2	Volumen	Düse	Absaug- fehler	Summe nach Anlage 1	Summe (unach (c) Anlage 1 c	Up 2)3)	Summe (s. nach (c. Anlage 1	Up 2)3)
			Vol.%	m³N	mm	%	μg/m³,N	mg/m³,N	mg/m³,N	g/h	g/h
1	22.09.2020	12:04-12:36	8,3	0,745	8	7	6,3	0,006	0,0005	0,20	0,01
2	23.09.2020	12:12-12:44	8,3	0,820	8	8	0,0	0,0000	0,0000	0,000	0,000
3	24.09.2020	09:08-09:40	8,4	0,782	8	5	0,0	0,0000	0,0000	0,000	0,000
Mittel	wert (Werte kle	einer Bestimmungsg	grenze (BG) mi	t 0% der	BG beri	ücksichtig	gt)	0,002		0,06	
Maxii	malwert							0,006		0,20	
Maxi	malwert - erwe	eiterte Messunsich	nerheit					0,01		0,2	
Maxi	ximalwert + erweiterte Messunsicherheit							0,01		0,2	
Gren	zwert							0.05		_	

- 1) bezogen auf 11 Vol.% O₂ nur bei Überschreitung des Bezugssauerstoffgehaltes von 11 Vol.% O₂
- 2) Bestimmung der Messunsicherheit (Up): indirekt
- 3) Rundung gemäß bundeseinheitlichem Mustermessbericht

Tabelle 6.2.5. Messergebnisse besondere hochtoxische Messparameter.

Komp	onente	PCDD/F + dl-	РСВ									
Nr	Datum	Zeit	WHO- TEQ ng/Probe	O₂ Vol.%	Nolumen W ₃ N	DÜSe	Absaug- fehler	WHO- TEQ 1) ng/m³,N	WHO- TEQ 1)3) ng/m³,N	Up 2)3) ng/m³,N	WHO- TEQ 3) mg/h	Up 2)3) mg/h
1	22.09.2020	10:19-16:19	0,00	8,2	4,735	6	3	0,00	0,000	0,000	0,000	0,000
2	23.09.2020	10:30-16:30	0,00	8,9	4,984	6	3	0,00	0,000	0,000	0,000	0,000
3	24.09.2020	08:50-14:50	0,00	8,4	4,907	6	3	0,00	0,000	0,000	0,000	0,000
Mittely	wert (Werte kl	einer Bestimmu	ıngsgrenze	(BG) mi	t 0% der	BG beri	icksichtig	jt)	0,000		0,000	
	nalwert			, ,			·		0,000		0,000	
Maxin	nalwert - erw	eiterte Messur	nsicherhei	t					0,0		0,0	
Maxin	Maximalwert + erweiterte Messunsicherheit								0,0		0,0	
Grenzwert 0,1								-				

¹⁾ bezogen auf 11 Vol.% O₂ nur bei Überschreitung des Bezugssauerstoffgehaltes von 11 Vol.% O₂

6.3 Messunsicherheiten

Die Messunsicherheiten wurden entsprechend der Müller-BBM-Prüfanweisung PA16-1Z06, basierend auf der Richtlinie VDI 4219, mittels indirekten Ansatzes berechnet.

Als Grundlage des Berechnungsverfahrens dient das Fehlerfortpflanzungsgesetz nach Gauß. Die Messunsicherheiten sind für den Maximalwert in den nachfolgenden Ergebnistabellen aufgeführt.

Tabelle 6.3.1. Messunsicherheit Massenkonzentration.

Komponente			Einheit	\mathbf{Y}_{max}	U_P	Y _{max} -U _P *)	Y _{max} +U _P *)	Bestimmungs- methode
N ₂ O			mg/m³,N	0,00	30,8	0	31	indirekt
HF			mg/m³,N	0,00	0,01	0	0	indirekt
HCN			mg/m³,N	0,1	0,04	0	0	indirekt
Hg			mg/m³,N	0,0000	0,0000	0,00	0,00	indirekt
Schwermetalle (Cd, Tl) nach § 8 (1) 3, Anlage 1 a der 17. BlmSchV	Summe nach Anlage 1 a		mg/m³,N	0,0000	0,0000	0,00	0,00	indirekt
Schwermetalle (Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Sn) nach § 8 (1) 3, Anlage 1 b der 17. BlmSchV	Summe nach Anlage 1 b		mg/m³,N	0,01	0,000	0,0	0,0	indirekt
Stoffe nach § 8 (1) 3, Anlage 1 c der 17. BlmSchV	Summe nach Anlage 1 c	1)	mg/m³,N	0,006	0,0005	0,01	0,01	indirekt
PCDD/F + dI-PCB	WHO-TEQ	1)	ng/m³,N	0,000	0,000	0,0	0,0	indirekt

^{*)} Rundung gemäß bundeseinheitlichem Mustermessbericht

Tabelle 6.3.2. Messunsicherheit Massenstrom.

Komponente			Einheit	Y _{max}	U _P	Y _{max} -U _P *)	Y _{max} +U _P *)	Bestimmungs- methode
N ₂ O			kg/h	0,00	0,9	0	1	indirekt
HF			g/h	0,00	0,3	0	0	indirekt
HCN			g/h	7,9	1,9	6	10	indirekt
Hg			mg/h	0,00	1,3	0	1	indirekt
Schwermetalle (Cd, Tl) nach § 8 (1) 3, Anlage 1 a der 17. BlmSchV	Summe nach Anlage 1 a		g/h	0,000	0,000	0,0	0,0	indirekt
Schwermetalle (Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Sn) nach § 8 (1) 3, Anlage 1 b der 17. BlmSchV	Summe nach Anlage 1 b		g/h	0,34	0,02	0,3	0,4	indirekt
Stoffe nach § 8 (1) 3, Anlage 1 c der 17. BlmSchV	Summe nach Anlage 1 c	1)	g/h	0,20	0,01	0,2	0,2	indirekt
PCDD/F + dl-PCB	WHO-TEQ	1)	mg/h	0,000	0,000	0,0	0,0	indirekt

^{*)} Rundung gemäß bundeseinheitlichem Mustermessbericht

ELR/MNR

²⁾ Bestimmung der Messunsicherheit (Up): indirekt

³⁾ Rundung gemäß bundeseinheitlichem Mustermessbericht

Fremdanalytik (siehe 1.12)
 Y_{max}: maximaler Messwert
 U_P: Messunsicherheit

Fremdanalytik (siehe 1.12)
 Y_{max}: maximaler Messwert

U_P: Messunsicherheit

6.4 Plausibilitätsprüfung

Die Messwerte liegen im selben Bereich wie die Ergebnisse der vergangenen Jahre und sind damit als plausibel einzustufen. Während der Probenahme traten keine Auffälligkeiten diesbezüglich auf.

Für den Inhalt des Berichtes zeichnen verantwortlich:

M. Sc. Stefan Hartmann

Berichterstellung

Telefon +49(911)600445-29

Dipl.-Ing. (FH) Frank Ellner-Schuberth

Qualitätssicherung

Telefon +49(911)600445-15

Dipl.-Ing. (FH) Frank Stöcklein

Fachlich Verantwortlich

Telefon +49(911)600445-0

Dieser Bericht darf nur in seiner Gesamtheit, einschließlich aller Anlagen, vervielfältigt, gezeigt oder veröffentlicht werden. Die Veröffentlichung von Auszügen bedarf der schriftlichen Genehmigung durch Müller-BBM. Die Ergebnisse beziehen sich nur auf die untersuchten Gegenstände.

DAKKS

Deutsche
Akkreditierungsstelle
D-PL-14119-01-01

D-PL-14119-01-02 D-PL-14119-01-03 D-PL-14119-01-04 Durch die DAkkS nach DIN EN ISO/IEC 17025:2018 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt nur für den in der Urkundenanlage aufgeführten Akkreditierungsumfang.

7 Anlagen

Anlage 1: Prüfmittelkatalog

Anlage 2: Messplan

Anlage 3: Mess- und Rechenwerte

Anlage 4: Graphische Darstellung des Verlaufs kontinuierlich gemessener Komponenten

ELR/MNR

Anlage 1: Prüfmittelkatalog

	Prüfmittel-			letzte	Prüf-	
Messkomponente	Ÿ.	Hersteller	Тур	Überprüfung		intervall Eignungsbekanntgabe / Prüfbericht
⊢	8909	Greisinger	GMH3210	08. 2020	12 Monate	
Pdy n	6974	Greisinger	GMH3156	08. 2020	12 Monate	
Patm	8336	Greisinger	GDH12AN	03. 2020	12 Monate	
H ₂ O	7296	Sartorius	LC4200	08. 2020	12 Monate	
H ₂ O, HF, HCN	10234	ltron	61,6	01. 2020	12 Monate	
Hg	10236	ltron	G1,6	08. 2020	12 Monate	
PCDD/F	9831	Müller-BBM	lso1.1	01. 2020	12 Monate	
SIS	9338	Müller-BBM	lso1.1	08. 2020	12 Monate	
0 ₂ , CO ₂	11526	Horiba	PG-350E	04. 2020	12 Monate	BAnz AT 05.03. 2013 B10 TÜV Rheinland, Berichtsnummer 936/21217617/A vom 05.10.2012
N ₂ O	6962	ABB	EL3020	04. 2020	12 Monate	BAnz. 2006, Nr. 194, S. 6715 vom 12.09.2006 TÜV Süddeutschland, Berichtsnummer 691317, 30.06.2006

Anlage 2: Messplan

Die Messungen wurden gemäß folgender Messplanung durchgeführt:

- Es werden 3 Einzelmessungen bei repräsentativer Anlagenauslastung durchgeführt.
- Die Messzeit je Einzelmessung beträgt gemäß TA Luft i. d. R. 30 Minuten.
- Die erforderlichen Abgasrandparameter (Abgastemperatur, Feuchte, statischer und dynamischer Druck) werden durch Messung bestimmt.
- Es werden die vorhandenen Messstutzen zur Durchführung der Messungen genutzt.
- Die Messungen erfolgen an den nach Richtlinie DIN EN 15259 bestimmten Messpunkten.
- Die entsprechenden Angaben zu den Betriebszuständen werden durch den Betreiber zur Verfügung gestellt.
- Die Messergebnisse werden unter Bezug auf die Betriebsbedingungen dargestellt; es wird ein zusammenfassender Bericht entsprechend DIN EN 15259 angefertigt.
- Geplanter Messtermin: 22. bis 24.09.2020
- Messtermin: 22. bis 24.09.2020

Anlage 3: Mess- und Rechenwerte

 Tabelle 7.3.1.
 Mess- und Rechenwerte Abgasrandbedingungen/Strömungsprofil.

Zeit	Teilfläche	Eintauchtiefe	dynamischer Druck	Geschwindigkeit Betrieb	dV/dt Betrieb	dV/dt N,f	dV/dt N,tr
hh:mm	(Achse/Nr.)	mm	hPa	m/s	m³/h	m³/h	m³/h
08:45	1	85	0,85	14,4	8240	5264	4551
	1	318	0,89	14,7	8432	5387	4657
	1	954	0,70	13,0	7460	4766	4120
	1	1187	0,72	13,3	7601	4856	4198
	2	85	0,75	13,5	7740	4945	4275
	2	318	0,85	14,4	8256	5274	4560
	2	954	0,83	14,3	8159	5212	4506
09:00	2	1187	0,78	13,8	7910	5054	4369
•	•	Mittelwert	0,80	13,95			•
		Summe			63798	40758	35234

mittlere Geschwindigkeit13,9 m/sStandardabweichung0,6 m/srelative Standardabweichung4,4 %Unsicherheit der Mittelwertbildung *)0,2 m/sVerhältnis max./min. Geschwindigkeit1,13 : 1

Tabelle 7.3.2. Mess- und Rechenwerte kontinuierliche Messparameter.

Kom	ponente	0,
NOIII	ponente	U ₂

Nr	Datum	Zeit	O_2	O ₂ O ₂ U ₁)
				1) 1)3) 2)3)
			Vol.%	Vol.%,N Vol.%,N Vol.9	6,N
1	22.09.2020	10:19-16:19	8,2	8,2 8,2 0,3	3
2	22.09.2020	12:04-12:36	8,3	8,3 8,2 0,	3
3	22.09.2020	14:32-15:02	8,2	8,2 8,1 0,	3
4	23.09.2020	10:30-16:30	8,9	8,9 8,9 0,	3
5	23.09.2020	12:12-12:44	8,3	8,3 8,3 0,	3
6	23.09.2020	12:01-12:31	8,2	8,2 8,1 0,	3
7	24.09.2020	08:50-14:50	8,4	8,4 8,3 0,	3
8	24.09.2020	09:08-09:40	8,4	8,4 8,4 0,	3
9	24.09.2020	09:39-10:09	8,4	8,4 8,3 0,	

¹⁾ keine O₂-Bezugswertrechnung

Tabelle 7.3.3. Mess- und Rechenwerte diskontinuierliche Messparameter.

ELR/MNR

Komponente HF

I	Datum	Zeit	Faktor GZ	GZ	T GZ	p Luft	Probe	Analyse	HF	Proben-
				m³	°C	hPa	m³N	mg/Probe	mg/m³	bezeichn.
	22.09.2020	14:32-15:02	0,997	0,061	26,0	956	0,052	< BG	< BG	1
	23.09.2020	12:01-12:31	0,997	0,060	24,5	951	0,052	< BG	< BG	2
	24.09.2020	09:39-10:09	0,997	0,059	17,5	949	0,052	< BG	< BG	3
					D: 1			9		

^{*)} entspricht dem Quotienten aus Standardabweichung und der Wurzel der Anzahl an Messungen

²⁾ Bestimmung der Messunsicherheit (Up): indirekt

³⁾ Rundung gemäß bundeseinheitlichem Mustermessbericht

Komponente Hg

Datum	Zeit	Faktor GZ	GZ	T GZ	p Luft	Probe	Analyse	Hg	Proben-
			m³	°C	hPa	m³N	μg/Probe	μg/m³	bezeichn.
22.09.2020	14:32-15:02	0,986	0,057	26,5	956	0,048	< BG	< BG	1
23.09.2020	12:01-12:31	0,986	0,062	24,0	951	0,052	< BG	< BG	2
24.09.2020	09:39-10:09	0,986	0,061	18,0	949	0,053	< BG	< BG	3
	•		-	Blindwert	-		√ BG		

Bestimmungsgrenze

HCN Komponente

Datum	Zeit	Faktor GZ	GZ	T GZ	p Luft	Probe	Analyse	HCN	Proben-
			m³	°C	hPa	m³N	mg/Probe	mg/m³	bezeichn.
22.09.2020	14:32-15:02	0,997	0,061	26,0	956	0,052	0,003	0,06	1
23.09.2020	12:01-12:31	0,997	0,060	24,5	951	0,052	0,004	0,07	2
24.09.2020	09:39-10:09	0,997	0,059	17,5	949	0,052	0,012	0,23	3
	•			Blindwert		•	< BG		

Bestimmungsgrenze

< BG 0,05 0,003

0,01

Tabelle 7.3.4. Mess- und Rechenwerte partikelförmige Messparameter.

Komponente SM

Probe Nr	Datum	Zeit	Probe 1	Cd	TI	As	Sb	Pb	Cr
			m³N	μg/Probe	μg/Probe	μg/Probe	μg/Probe	μg/Probe	μg/Probe
1	22.09.2020	12:04-12:36	0,745	0,0000	0,0000	0,0000	0,0000	1,1287	4,6598
2	23.09.2020	12:12-12:44	0,820	0,0000	0,0000	0,0000	0,0000	1,2435	1,4015
3	24.09.2020	09:08-09:40	0,782	0,0000	0,0000	0,0000	0,0000	1,1848	1,3352
		BG		0,1780	0,1780	1,7802	1,7802	1,7802	1,7802
		BW		0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

Werte kleiner Bestimmungsgrenze (BG) mit 0% der BG berücksichtigt

BG Bestimmungsgrenze

BW Blindwert

Komponente SM

Probe Nr	Datum	Zeit	Probe 1	Со	Cu	Mn	Ni	V	Sn
			m³N	μg/Probe	μg/Probe	μg/Probe	μg/Probe	μg/Probe	μg/Probe
1	22.09.2020	12:04-12:36	0,745	0,0000	1,2895	0,6716	3,0866	0,0000	0,0000
2	23.09.2020	12:12-12:44	0,820	0,0000	0,1736	0,7400	3,4007	0,0000	0,0000
3	24.09.2020	09:08-09:40	0,782	0,0000	0,1654	0,7050	3,2399	0,0000	0,0000
		BG		1,7802	1,7802	1,7802	1,7802	1,7802	1,7802
		BW		0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

Werte kleiner Bestimmungsgrenze (BG) mit 0% der BG berücksichtigt

BG Bestimmungsgrenze

BW Blindwert

SM Komponente

Probe Nr	Datum	Zeit	Probe 1	Cd	TI	As	Sb	Pb	Cr
			m³N	μg/m³	μg/m³	µg/m³	µg/m³	µg/m³	μg/m³
1	22.09.2020	12:04-12:36	0,745	<0,2390	<0,2390	<2,3904	<2,3904	<2,3904	6,2572
2	23.09.2020	12:12-12:44	0,820	<0,2390	<0,2390	<2,3904	<2,3904	<2,3904	<2,3904
3	24.09.2020	09:08-09:40	0,782	<0,2390	<0,2390	<2,3904	<2,3904	<2,3904	<2,3904
		BG		0,2390	0,2390	2,3904	2,3904	2,3904	2,3904
		BW	•	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

Werte kleiner Bestimmungsgrenze (BG) mit 0% der BG berücksichtigt

BG Bestimmungsgrenze

ELR/MNR

BW Blindwert

Komponente SM

Probe Nr	Datum	Zeit	Probe 1 m³N	Co µg/m³	Cu µg/m³	Mn µg/m³	Ni µg/m³	V µg/m³	Sn µg/m³
1	22.09.2020	12:04-12:36	0.745	<2.3904	<2.3904	<u>μg/π</u> -	4.1446	<u>μg/πι-</u> <2.3904	<u>μg/πι</u> <2.3904
2	23.09.2020	12:12-12:44	0,820	<2,3904	<2,3904	<2,3904	4,1446	<2,3904	<2,3904
3	24.09.2020	09:08-09:40	0,782	<2,3904	<2,3904	<2,3904	4,1446	<2,3904	<2,3904
		BG		2,3904	2,3904	2,3904	2,3904	2,3904	2,3904
		BW		0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

Werte kleiner Bestimmungsgrenze (BG) mit 0% der BG berücksichtigt

BG Bestimmungsgrenze

BW Blindwert

Tabelle 7.3.5. Mess- und Rechenwerte besondere hochtoxische Messparameter.

Komponente		WHO-TEQ PCDD/F /B(a)P								
Probe Nr	Datum	Zeit	Probe 1	PCDD/F	PCDD/F	dl-PCB	dl-PCB			
			m³N	ng/Probe	ng/m³	ng/Probe	ng/m³			
1	22.09.2020	10:19-16:19	4,735	0,0005	<0,001	0,0000	<0,001			
2	23.09.2020	10:30-16:30	4,984	0,0000	<0,001	0,0000	<0,001			
3	24.09.2020	08:50-14:50	4,907	0,0035	<0,001	0,0000	<0,001			
		BG			0,0014		0,0009			
		BW			0,0009	<u>. </u>	0,0000			

Werte kleiner Bestimmungsgrenze (BG) mit 0% der BG berücksichtigt

BG Bestimmungsgrenze

BW Blindwert

02 [Vol.-%] 30,0 12,5 10,0 27,5 25,0 22,5 20,0 -2,5 7,5 5,0 2,5 0,0 18:12 84:71 12:71 ₽9:91 72:91 00:91 15:34 Konzentrationsverlauf vom 22.09.2020 15:07 14:40 14:13 13:46 N20 13:18 15:52 12:25 89:11 11:31 11:04 10:37 01:01 6:43 91:6 175 22 -52 325 300 275 225 200 150 125 001 20 22 250

Anlage 4: Graphische Darstellung des Verlaufs kontinuierlich gemessener Komponenten

Abbildung 7.4.1. Graphischer Verlauf der kontinuierlich gemessenen Parameter vom 22.09.2020.

Anmerkung zu N2O,dr: Driftkorrigierte Messwerte der N2O-Messung resultierend aus einer zulässigen Drift am 22.09.2020

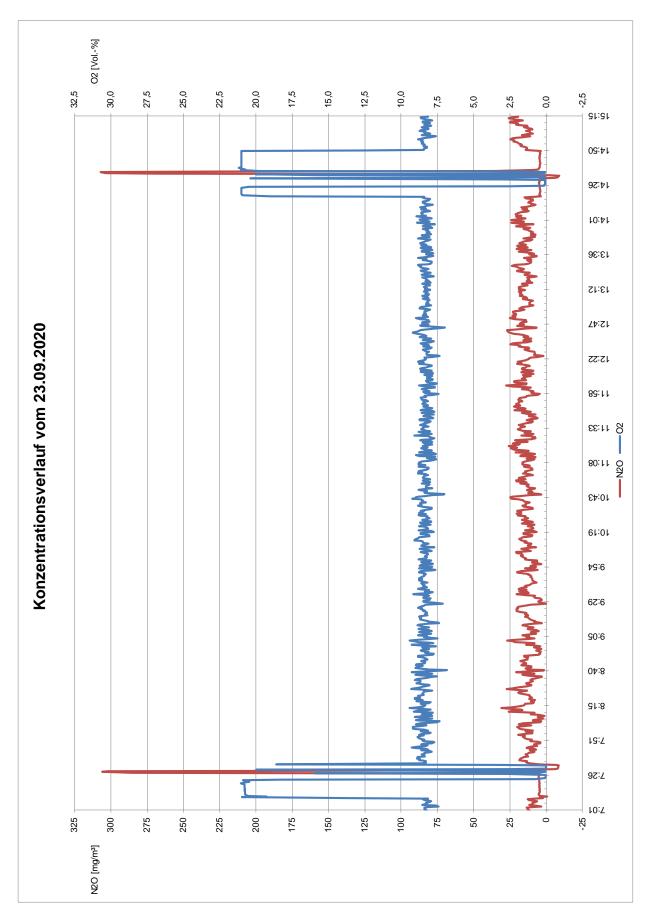


Abbildung 7.4.2. Graphischer Verlauf der kontinuierlich gemessenen Parameter vom 23.09.2020.

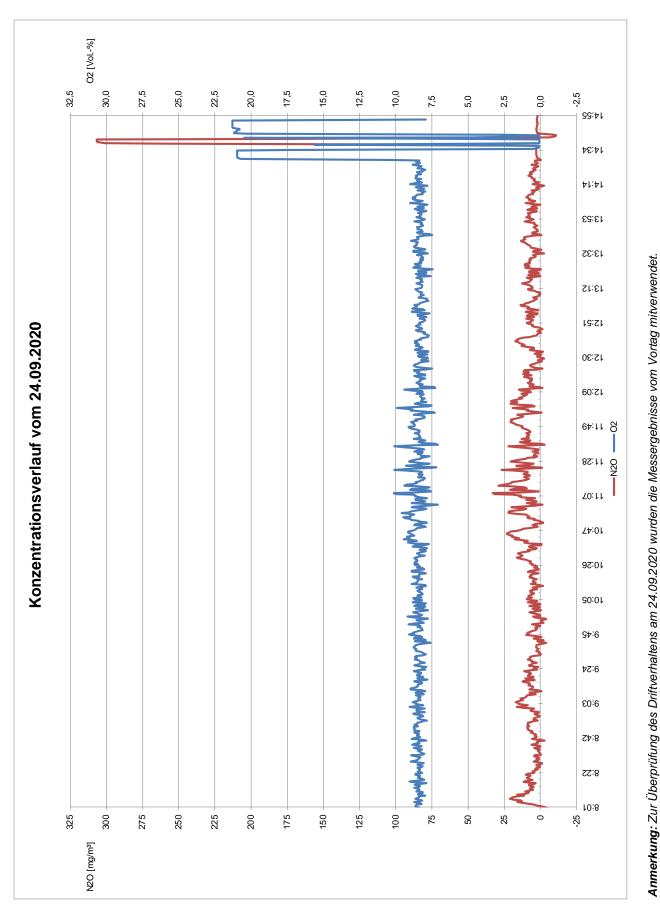


Abbildung 7.4.3. Graphischer Verlauf der kontinuierlich gemessenen Parameter vom 24.09.2020.

Anlage 5: Einzelergebnisse PCDD/F, dl-PCB und Benzo(a)pyren

Prüfbericht Nr. 1301 20-1990 P01 Datum: 2020-10-14 • Seite: 1 von 18

Auftraggeber: Müller-BBM GmbH

Niederlassung Nürnberg Fürther Str. 35

90513 Zirndorf

0911 600445-0 Tel.: Fax: 0911 600445-11

E-Mail: frank.ellner-schuberth@mbbm.com

Auftrag / Projekt: M158 037 / B01

mas-Ansprechpartner: Dr. Peter Luthardt

Wilhelm-Schickard-Straße 5 48149 Münster

+49 (0) 251 384415-15 Tel.:

+49 (0) 251 384415-01 E-Mail: p.luthardt@mas-tp.com

mas-Auftrag: 20-1990

Prüfung: Analyse von Abgasproben auf polychlorierte Dibenzo(p)dioxine (PCDD) und

polychlorierte Dibenzofurane (PCDF), auf polychlorierte Biphenyle (hier: WHO-PCB)

sowie auf Benzo[a]pyren (B[a]P)

Prüfgegenstand:

Probenbezeichnung Auftraggeber	Probenart	Proben-Ansicht	mas-Probennummer
M158 037 - 1	Abgasprobe	2 Kartuschen + Kond.	20-1990-001
M158 037 - 2	Abgasprobe	2 Kartuschen + Kond.	20-1990-002
M158 037 - 3	Abgasprobe	2 Kartuschen + Kond.	20-1990-003
M158 037 - BW	Blindprobe Abgas	2 Kartuschen + Kond.	20-1990-004

Probeneingang: 01.10.2020

Probenahme: Die Proben wurden der mas gmbh vom Auftraggeber zugesandt.

Prüfbeginn: 01.10.2020 Prüfende: 13.10.2020

Prüfverfahren: PCDD/F: DIN EN 1948, Blatt 2/3:2006-06.

PCB: DIN EN 1948, Blatt 4:2014-03

B[a]P: VDI 3874:2006-12

Die wichtigsten Analysenschritte lassen sich wie folgt zusammenfassen:

Probenvorbereitung und Extraktion

- HCl-Aufschluß des Filters, Filtration des Kondensats, Trocknung des

Hinweise: Die Prüfergebnisse beziehen sich ausschließlich auf die hier

analysierten Proben. Der vorliegende Prüfbericht darf ohne schriftliche Zustimmung der mas gmbh nicht auszugsweise vervielfältigt werden.

Prüfbericht Nr. 1301 20-1990 P01

Datum: 2020-10-14 • Seite: 2 von 18

Filterrückstandes und des XAD-Harzes

- Zugabe von ¹³C₁₂-markierten PCDD/F- und PCB-Quantifizierungsstandards
- Soxhlet-Extraktion der Kompartimente mit Toluol/Aceton
- Teilung des Gesamtextraktes zur Analyse auf die verschiedenen Parameter

PCDD/F- und PCB-Analyse

- mehrstufiges Extrakt clean-up
- Zugabe von ¹³C₁₂-markierten PCDD/F- und PCB-Wiederfindungsstandards
- getrennte HRGC/HRMS Analyse auf PCDD/F und PCB
- Quantifizierung über die internen Standards (Isotopenverdünnungsmethode)

B[a]P-Analyse

- Zugabe von deuteriertem Benzo[a]pyren als internen Standard zu einem Aliquot des Extraktes
- säulenchromatographisches clean-up des Extraktes
- HRGC/LRMS-Analyse
- Quantifizierung über die internen deuterierten Standards (Isotopenverdünnungsmethode)

Bemerkungen:

Die Prüfergebnisse sind den nachfolgenden Tabellen zu entnehmen. Die Angaben wurden jeweils auf die Gesamtprobe bezogen.

Die Toxizitätsäquivalent-Faktoren (TE-Faktoren) nach NATO/CCMS (I-TEF) und WHO (WHO-TEF), sowie Angaben zur Messunsicherheit der analytischen Bestimmung für die hier untersuchten Parameter, sind im Anhang aufgeführt.

Kommentare:

Eine Einordnung oder Bewertung der Analysenergebnisse bleibt dem Auftraggeber vorbehalten.

Münster, den 14.10.2020

Dieser Prüfbericht wurde von Dr. Peter Luthardt freigegeben. Der Prüfbericht ist auch ohne Unterschrift gültig.

Hinweise: Die Prüfergebnisse beziehen sich ausschließlich auf die hier analysierten Proben. Der vorliegende Prüfbericht darf ohne schriftliche Zustimmung der mas gmbh nicht auszugsweise vervielfältigt werden.

Prüfbericht Nr. 1301 20-1990 P01
Datum: 2020-10-14 • Seite: 3 von 18

Tab. 01: Ergebnisse der Analyse einer Emissionsprobe auf PCDD/F; Angaben bezogen auf die Gesamtprobe

Probenbezeichnung Auftraggeber		M158 037 - 1		
Probenart mas-Probennummer		Abgasprobe 20-1990-001		
Parameter	Einheit	Messwert	BestGrenze *	Prüfverfahren
PCDD 2378-Kongenere				
2378-TetraCDD	ng/Probe	nd	0,00100	DIN EN 1948
12378-PentaCDD	ng/Probe	nd	0,00200	DIN EN 1948
123478-HexaCDD	ng/Probe	nd	0,00300	DIN EN 1948
123678-HexaCDD	ng/Probe	nd	0,00300	DIN EN 1948
123789-HexaCDD	na/Probe	nd	0,00300	DIN EN 1948
1234678-HeptaCDD	ng/Probe	0,0151	0,0150	DIN EN 1948
12346789-OctaCDD	ng/Probe	nd	0,0450	DIN EN 1948
PCDF 2378-Kongenere	,		-,	
2378-TetraCDF	ng/Probe	nd	0,00200	DIN EN 1948
12378-PentaCDF	ng/Probe	nd	0,00200	DIN EN 1948 DIN EN 1948
23478-PentaCDF	ng/Probe	nd	0,00200	DIN EN 1948
123478-HexaCDF	ng/Probe	nd	0,00200	DIN EN 1948
123678-HexaCDF	ng/Probe	nd	0,00300	DIN EN 1948
123789-HexaCDF	ng/Probe	nd	0,00300	DIN EN 1948
234678-HexaCDF	ng/Probe	0,00379	0,00300	DIN EN 1948
1234678-HeptaCDF	ng/Probe	nd	0,0150	DIN EN 1948
1234789-HeptaCDF	ng/Probe	nd	0,0150	DIN EN 1948
12346789-OctaCDF	ng/Probe	nd	0,0450	DIN EN 1948
PCDD Summen	5,		,	
Summe TetraCDD	ng/Probe	0,00261		DIN EN 1948
Summe PentaCDD	ng/Probe	0,00250		DIN EN 1948
Summe HexaCDD	ng/Probe	0,0151		DIN EN 1948
Summe HeptaCDD	ng/Probe	0,0151		DIN EN 1948
OctaCDD	ng/Probe	nd	0,0450	DIN EN 1948
PCDF Summen	5,		,	
Summe TetraCDF	ng/Probe	0,0294		DIN EN 1948
Summe PentaCDF	ng/Probe	0,0260		DIN EN 1948
Summe HexaCDF	ng/Probe	0,0126		DIN EN 1948
Summe HeptaCDF	ng/Probe	nb		DIN EN 1948
OctaCDF	ng/Probe	nd	0,0450	DIN EN 1948
PCDD/F Summen	5,		,	
Summe Tetra - bis OctaCDDa	ng/Probe	0,0352		DIN EN 1948
Summe Tetra - bis OctaCDPa	ng/Probe	0,0680		DIN EN 1948
Summe Tetra - bis OctaCDD/Fa	ng/Probe	0,103		DIN EN 1948
PCDD/F-TEQ-Werte		-,		5111 211 15 16
I-TEQ exklusive BG ^a	ng/Probe	0,000530		DIN EN 1948
I-TEQ exklusive BG ^b	ng/Probe ng/Probe	0,00602	0,00594	DIN EN 1948 DIN EN 1948
WHO-PCDD/F-TEQ 2005 exkl. BG ^a	ng/Probe	0,000530	0,00394	DIN EN 1948 DIN EN 1948
WHO-PCDD/F-TEQ 2005 exkl. BG ^b	ng/Probe	0,00652	0,00644	DIN EN 1948
• •		0,00032	0,00044	DIN LIV 1940
Wiederfindung Probenahmestandar		07		DIN EN 10.10
WF-12378-PentaCDF-PS	% %	97		DIN EN 1948
WF-123789-HexaCDF-PS		98		DIN EN 1948
WF-1234789-HeptaCDF-PS	%	92		DIN EN 1948

Die Erläuterungen zu den Indizes entnehmen sie bitte der Legende im Anschluss an die Ergebnistabellen.

Prüfbericht Nr. 1301 20-1990 P01

Datum: 2020-10-14 • Seite: 4 von 18

Tab. 02: Ergebnisse der Analyse einer Abgasprobe auf PCB; Angaben bezogen auf die Gesamtprobe

Probenbezeichnung Auftraggeber		M158 037 - 1		
Probenart mas-Probennummer		Abgasprobe 20-1990-001		
Parameter	Einheit	Messwert	BestGrenze *	Prüfverfahren
Non-ortho WHO-PCB				
PCB 77	ng/Probe	nd	0,100	DIN EN 1948, 4
PCB 81	ng/Probe	nd	0,0500	DIN EN 1948, 4
PCB 126	ng/Probe	nd	0,0250	DIN EN 1948, 4
PCB 169	ng/Probe	nd	0,0500	DIN EN 1948, 4
Mono-ortho WHO-PCB				
PCB 105	ng/Probe	nd	0,500	DIN EN 1948, 4
PCB 114	ng/Probe	nd	0,100	DIN EN 1948, 4
PCB 118	ng/Probe	nd	1,00	DIN EN 1948, 4
PCB 123	ng/Probe	nd	0,100	DIN EN 1948, 4
PCB 156	ng/Probe	nd	0,100	DIN EN 1948, 4
PCB 157	ng/Probe	nd	0,100	DIN EN 1948, 4
PCB 167	ng/Probe	nd	0,100	DIN EN 1948, 4
PCB 189	ng/Probe	nd	0,100	DIN EN 1948, 4
WHO-PCB-TEQ-Werte				
WHO-PCB-TEQ 2005 exkl. BGa	ng/Probe	nb		DIN EN 1948, 4
WHO-PCB-TEQ 2005 inkl. BGb	ng/Probe	0,00409	0,00409	DIN EN 1948, 4
Wiederfindung Probenahmestandar	d			
WF PCB 60	%	110		DIN EN 1948, 4
WF PCB 127	%	73		DIN EN 1948, 4
WF PCB 159	%	102		DIN EN 1948, 4

Die Erläuterungen zu den Indizes entnehmen sie bitte der Legende im Anschluss an die Ergebnistabellen.

ELR/MNR

\\S-MUC-FS01\ALLEFIRMEN\\M\PROJ\158\M158\\37\M158\037_02_BER_1D.DOCX:27.11.2020

Prüfbericht Nr. 1301 20-1990 P01

Datum: 2020-10-14 • Seite: 5 von 18

Benzo[a]pyren

0,0100

VDI 3874

Tab. 03: Ergebnisse der Analyse einer Emissionsprobe auf Benzo[a]pyren; Angaben bezogen auf die Gesamtprobe

μg/Probe

M158 037 - 1 Probenbezeichnung Auftraggeber Probenart Abgasprobe 20-1990-001 mas-Probennummer Prüfverfahren Einheit Messwert Best.-Grenze **Parameter PAK Komponenten**

nb

Die Erläuterungen zu den Indizes entnehmen sie bitte der Legende im Anschluss an die Ergebnistabellen.

Prüfbericht Nr. 1301 20-1990 P01
Datum: 2020-10-14 • Seite: 6 von 18

Tab. 04: Ergebnisse der Analyse einer Emissionsprobe auf PCDD/F; Angaben bezogen auf die Gesamtprobe

Probenbezeichnung Auftraggeber		M158 037 - 2		
Probenart mas-Probennummer		Abgasprobe 20-1990-002		
Parameter	Einheit	Messwert	BestGrenze *	Prüfverfahren
PCDD 2378-Kongenere				
2378-TetraCDD	ng/Probe	nd	0,00100	DIN EN 1948
12378-PentaCDD	ng/Probe	nd	0,00200	DIN EN 1948
123478-HexaCDD	ng/Probe	nd	0,00300	DIN EN 1948
123678-HexaCDD	ng/Probe	nd	0,00300	DIN EN 1948
123789-HexaCDD	na/Probe	nd	0,00300	DIN EN 1948
1234678-HeptaCDD	ng/Probe	nd	0,0150	DIN EN 1948
12346789-OctaCDD	ng/Probe	nd	0,0450	DIN EN 1948
PCDF 2378-Kongenere	,		-/	
2378-TetraCDF	ng/Probe	nd	0,00200	DIN EN 1948
12378-PentaCDF	ng/Probe	nd	0,00200	DIN EN 1948
23478-PentaCDF	ng/Probe	nd	0,00200	DIN EN 1948
123478-HexaCDF	ng/Probe	nd	0,00300	DIN EN 1948
123678-HexaCDF	ng/Probe	nd	0,00300	DIN EN 1948
123789-HexaCDF	ng/Probe	nd	0,00300	DIN EN 1948
234678-HexaCDF	ng/Probe	nd	0,00300	DIN EN 1948
1234678-HeptaCDF	ng/Probe	nd	0,0150	DIN EN 1948
1234789-HeptaCDF	ng/Probe	nd	0,0150	DIN EN 1948
12346789-OctaCDF	ng/Probe	nd	0,0450	DIN EN 1948
PCDD Summen	-		•	
Summe TetraCDD	ng/Probe	0,00418		DIN EN 1948
Summe PentaCDD	ng/Probe	0,0122		DIN EN 1948
Summe HexaCDD	ng/Probe	0,0167		DIN EN 1948
Summe HeptaCDD	ng/Probe	nb		DIN EN 1948
OctaCDD	na/Probe	nd	0,0450	DIN EN 1948
PCDF Summen	-		,	
Summe TetraCDF	ng/Probe	0,0425		DIN EN 1948
Summe PentaCDF	ng/Probe	0,0226		DIN EN 1948
Summe HexaCDF	ng/Probe	0,0129		DIN EN 1948
Summe HeptaCDF	ng/Probe	nb		DIN EN 1948
OctaCDF	ng/Probe	nd	0,0450	DIN EN 1948
PCDD/F Summen	5,		,	
Summe Tetra - bis OctaCDDa	ng/Probe	0,0332		DIN EN 1948
Summe Tetra - bis OctaCDPa	ng/Probe	0,0332		DIN EN 1948
Summe Tetra - bis OctaCDD/Fa	ng/Probe	0,111		DIN EN 1948
PCDD/F-TEQ-Werte	119,11050	-,		51.1 2.1 15 10
	n a / Dua h a	nb		DIN EN 1049
I-TEQ exklusive BG ^a	ng/Probe ng/Probe	0,00594	0,00594	DIN EN 1948 DIN EN 1948
I-TEQ inklusive BG ^b WHO-PCDD/F-TEQ 2005 exkl. BG ^a	ng/Probe ng/Probe	0,00594 nb	0,00594	DIN EN 1948 DIN EN 1948
WHO-PCDD/F-TEQ 2005 exkl. BG ^a WHO-PCDD/F-TEQ 2005 inkl. BG ^b	ng/Probe	0,00644	0,00644	DIN EN 1948 DIN EN 1948
• •		0,00044	0,00044	DIN LIN 1940
Wiederfindung Probenahmestandar		404		D.T
WF-12378-PentaCDF-PS	%	104		DIN EN 1948
WF-123789-HexaCDF-PS	%	107		DIN EN 1948
WF-1234789-HeptaCDF-PS	%	99		DIN EN 1948

Die Erläuterungen zu den Indizes entnehmen sie bitte der Legende im Anschluss an die Ergebnistabellen.

Prüfbericht Nr. 1301 20-1990 P01

Datum: 2020-10-14 • Seite: 7 von 18

Tab. 05: Ergebnisse der Analyse einer Abgasprobe auf PCB; Angaben bezogen auf die Gesamtprobe

Probenbezeichnung Auftraggeber		M158 037 - 2		
Probenart		Abgasprobe		
mas-Probennummer		20-1990-002		
Parameter	Einheit	Messwert	BestGrenze *	Prüfverfahren
Non-ortho WHO-PCB				
PCB 77	ng/Probe	nd	0,100	DIN EN 1948, 4
PCB 81	ng/Probe	nd	0,0500	DIN EN 1948, 4
PCB 126	ng/Probe	nd	0,0250	DIN EN 1948, 4
PCB 169	ng/Probe	nd	0,0500	DIN EN 1948, 4
Mono-ortho WHO-PCB				
PCB 105	ng/Probe	nd	0,500	DIN EN 1948, 4
PCB 114	ng/Probe	nd	0,100	DIN EN 1948, 4
PCB 118	ng/Probe	nd	1,00	DIN EN 1948, 4
PCB 123	ng/Probe	nd	0,100	DIN EN 1948, 4
PCB 156	ng/Probe	0,117	0,100	DIN EN 1948, 4
PCB 157	ng/Probe	nd	0,100	DIN EN 1948, 4
PCB 167	ng/Probe	nd	0,100	DIN EN 1948, 4
PCB 189	ng/Probe	nd	0,100	DIN EN 1948, 4
WHO-PCB-TEQ-Werte				
WHO-PCB-TEQ 2005 exkl. BGa	ng/Probe	0,00000352		DIN EN 1948, 4
WHO-PCB-TEQ 2005 inkl. BGb	ng/Probe	0,00409	0,00409	DIN EN 1948, 4
Wiederfindung Probenahmestandare	d			
WF PCB 60	%	114		DIN EN 1948, 4
WF PCB 127	%	70		DIN EN 1948, 4
WF PCB 159	%	104		DIN EN 1948, 4

Die Erläuterungen zu den Indizes entnehmen sie bitte der Legende im Anschluss an die Ergebnistabellen.

\\S-MUC-FS01\ALLEFIRMEN\\M\PROJ\158\M158\\37\M158\037_02_BER_1D.DOCX:27.11.2020

Prüfbericht Nr. 1301 20-1990 P01

Datum: 2020-10-14 • Seite: 8 von 18

PAK Komponenten Benzo[a]pyren

VDI 3874

0,0100

Tab. 06: Ergebnisse der Analyse einer Emissionsprobe auf Benzo[a]pyren; Angaben bezogen auf die Gesamtprobe

μg/Probe

M158 037 - 2 Probenbezeichnung Auftraggeber Probenart Abgasprobe 20-1990-002 mas-Probennummer Prüfverfahren Einheit Messwert Best.-Grenze **Parameter**

nb

Die Erläuterungen zu den Indizes entnehmen sie bitte der Legende im Anschluss an die Ergebnistabellen.

Prüfbericht Nr. 1301 20-1990 P01
Datum: 2020-10-14 • Seite: 9 von 18

Tab. 07: Ergebnisse der Analyse einer Emissionsprobe auf PCDD/F; Angaben bezogen auf die Gesamtprobe

Probenbezeichnung Auftraggeber		M158 037 - 3		
Probenart mas-Probennummer		Abgasprobe 20-1990-003		
Parameter	Einheit	Messwert	BestGrenze *	Prüfverfahrei
PCDD 2378-Kongenere				
2378-TetraCDD	ng/Probe	nd	0,00100	DIN EN 1948
12378-PentaCDD	ng/Probe	nd	0,00200	DIN EN 1948
123478-HexaCDD	ng/Probe	nd	0,00300	DIN EN 1948
123678-HexaCDD	ng/Probe	0,00375	0,00300	DIN EN 1948
123789-HexaCDD	ng/Probe	nd	0,00300	DIN EN 1948
1234678-HeptaCDD	ng/Probe	0,0289	0,0150	DIN EN 1948
12346789-OctaCDD	ng/Probe	0,0865	0,0450	DIN EN 1948
PCDF 2378-Kongenere	5,	,	•	
2378-TetraCDF	ng/Probe	nd	0,00200	DIN EN 1948
12378-PentaCDF	ng/Probe	0,00228	0,00200	DIN EN 1948
23478-PentaCDF	ng/Probe	0,00273	0,00200	DIN EN 1948
123478-HexaCDF	ng/Probe	0,00336	0,00300	DIN EN 1948
123678-HexaCDF	ng/Probe	0,00473	0,00300	DIN EN 1948
123789-HexaCDF	ng/Probe	nd	0,00300	DIN EN 1948
234678-HexaCDF	ng/Probe	0,00857	0,00300	DIN EN 1948
1234678-HeptaCDF	ng/Probe	0,0287	0,0150	DIN EN 1948
1234789-HeptaCDF	ng/Probe	nd	0,0150	DIN EN 1948
12346789-OctaCDF	ng/Probe	nd	0,0450	DIN EN 1948
PCDD Summen				
Summe TetraCDD	ng/Probe	0,00509		DIN EN 1948
Summe PentaCDD	ng/Probe	0,0102		DIN EN 1948
Summe HexaCDD	ng/Probe	0,0255		DIN EN 1948
Summe HeptaCDD	ng/Probe	0,0557		DIN EN 1948
OctaCDD	ng/Probe	0,0865	0,0450	DIN EN 1948
PCDF Summen				
Summe TetraCDF	ng/Probe	0,0159		DIN EN 1948
Summe PentaCDF	ng/Probe	0,0218		DIN EN 1948
Summe HexaCDF	ng/Probe	0,0348		DIN EN 1948
Summe HeptaCDF	ng/Probe	0,0287		DIN EN 1948
OctaCDF	ng/Probe	nd	0,0450	DIN EN 1948
PCDD/F Summen				
Summe Tetra- bis OctaCDDa	ng/Probe	0,183		DIN EN 1948
Summe Tetra- bis OctaCDFa	ng/Probe	0,101		DIN EN 1948
Summe Tetra- bis OctaCDD/P	ng/Probe	0,284		DIN EN 1948
PCDD/F-TEQ-Werte				
I-TEQ exklusive BGa	ng/Probe	0,00418		DIN EN 1948
I-TEQ inklusive BG ^b	ng/Probe	0,00748	0,00594	DIN EN 1948
WHO-PCDD/F-TEQ 2005 exkl. BGa	ng/Probe	0,00353	•	DIN EN 1948
WHO-PCDD/F-TEQ 2005 inkl. BGb	ng/Probe	0,00779	0,00644	DIN EN 1948
Wiederfindung Probenahmestandard	1			
WF-12378-PentaCDF-PS	%	103		DIN EN 1948
WF-123789-HexaCDF-PS	%	96		DIN EN 1948
WF-1234789-HeptaCDF-PS	%	94		DIN EN 1948

Die Erläuterungen zu den Indizes entnehmen sie bitte der Legende im Anschluss an die Ergebnistabellen.

Prüfbericht Nr. 1301 20-1990 P01
Datum: 2020-10-14 • Seite: 10 von 18

Tab. 08: Ergebnisse der Analyse einer Abgasprobe auf PCB; Angaben bezogen auf die Gesamtprobe

Probenbezeichnung Auftraggeber		M158 037 - 3		
Probenart mas-Probennummer		Abgasprobe 20-1990-003		
Parameter	Einheit	Messwert	BestGrenze *	Prüfverfahren
Non-ortho WHO-PCB				
PCB 77	ng/Probe	nd	0,100	DIN EN 1948, 4
PCB 81	ng/Probe	nd	0,0500	DIN EN 1948, 4
PCB 126	ng/Probe	nd	0,0250	DIN EN 1948, 4
PCB 169	ng/Probe	nd	0,0500	DIN EN 1948, 4
Mono-ortho WHO-PCB				
PCB 105	ng/Probe	nd	0,500	DIN EN 1948, 4
PCB 114	ng/Probe	nd	0,100	DIN EN 1948, 4
PCB 118	ng/Probe	nd	1,00	DIN EN 1948, 4
PCB 123	ng/Probe	nd	0,100	DIN EN 1948, 4
PCB 156	ng/Probe	nd	0,100	DIN EN 1948, 4
PCB 157	ng/Probe	nd	0,100	DIN EN 1948, 4
PCB 167	ng/Probe	nd	0,100	DIN EN 1948, 4
PCB 189	ng/Probe	nd	0,100	DIN EN 1948, 4
WHO-PCB-TEQ-Werte				
WHO-PCB-TEQ 2005 exkl. BGa	ng/Probe	nb		DIN EN 1948, 4
WHO-PCB-TEQ 2005 inkl. BGb	ng/Probe	0,00409	0,00409	DIN EN 1948, 4
Wiederfindung Probenahmestanda	ırd			
WF PCB 60	%	104		DIN EN 1948, 4
WF PCB 127	%	72		DIN EN 1948, 4
WF PCB 159	%	100		DIN EN 1948, 4

Die Erläuterungen zu den Indizes entnehmen sie bitte der Legende im Anschluss an die Ergebnistabellen.

ELR/MNR

||S-MUC-FS01\ALLEFIRMEN\M\PROJ\158\M158037\M158037_02_BER_1D.DOCX:27.11.2020

Prüfbericht Nr. 1301 20-1990 P01

Datum: 2020-10-14 • Seite: 11 von 18

Benzo[a]pyren

VDI 3874

0,0100

Tab. 09: Ergebnisse der Analyse einer Emissionsprobe auf Benzo[a]pyren; Angaben bezogen auf die Gesamtprobe

μg/Probe

Probenbezeichnung Auftraggeber

M158 037 - 3

Probenart
mas-Probennummer

Abgasprobe
20-1990-003

Parameter
Einheit
Messwert
Best.-Grenze * Prüfverfahren

PAK Komponenten

nb

Die Erläuterungen zu den Indizes entnehmen sie bitte der Legende im Anschluss an die Ergebnistabellen.

ELR/MNR

Prüfbericht Nr. 1301 20-1990 P01
Datum: 2020-10-14 • Seite: 12 von 18

Tab. 10: Ergebnisse der Analyse einer Emissionsprobe auf PCDD/F; Angaben bezogen auf die Gesamtprobe

Probenbezeichnung Auftraggeber		M158 037 - BW		
Probenart mas-Probennummer		Blindprobe Abgas 20-1990-004		
Parameter	Einheit	Messwert	BestGrenze *	Prüfverfahre
PCDD 2378-Kongenere				
•	u u /Du a la a	0.00122	0.00100	DIN EN 1040
2378-TetraCDD 12378-PentaCDD	ng/Probe	0,00133 nd	0,00100 0,00200	DIN EN 1948 DIN EN 1948
12378-PentaCDD 123478-HexaCDD	ng/Probe	na nd	0,00200	DIN EN 1948 DIN EN 1948
123678-HexaCDD 123678-HexaCDD	ng/Probe ng/Probe	0,0110	0,00300	DIN EN 1948 DIN EN 1948
123789-HexaCDD		0,0110	0,00300	DIN EN 1948
1234678-HeptaCDD	ng/Probe ng/Probe	0,00329	0,0150	DIN EN 1948
12346789-OctaCDD	ng/Probe	0,0372 nd	0,0450	DIN EN 1948
	ng/Frobe	iiu	0,0430	DIN LN 1940
PCDF 2378-Kongenere	(5.1			
2378-TetraCDF	ng/Probe	nd	0,00200	DIN EN 1948
12378-PentaCDF	ng/Probe	0,00212	0,00200	DIN EN 1948
23478-PentaCDF	ng/Probe	nd	0,00200	DIN EN 1948
123478-HexaCDF	ng/Probe	0,00317	0,00300	DIN EN 1948
123678-HexaCDF	ng/Probe	nd	0,00300	DIN EN 1948
123789-HexaCDF	ng/Probe	nd	0,00300	DIN EN 1948
234678-HexaCDF	ng/Probe	0,0034 6 nd	0,00300	DIN EN 1948
1234678-HeptaCDF	ng/Probe	nd nd	0,0150	DIN EN 1948
1234789-HeptaCDF 12346789-OctaCDF	ng/Probe ng/Probe	nd nd	0,0150 0,0450	DIN EN 1948 DIN EN 1948
PCDD Summen	ng/Probe	IIG	0,0430	DIN EN 1940
	6	0.0004		B.T
Summe TetraCDD	ng/Probe	0,0924		DIN EN 1948
Summe PentaCDD	ng/Probe	0,0508		DIN EN 1948
Summe HexaCDD	ng/Probe	0,0706 0,0577		DIN EN 1948
Summe HeptaCDD OctaCDD	ng/Probe ng/Probe	0,0577 nd	0,0450	DIN EN 1948 DIN EN 1948
	rig/Probe	IIu	0,0430	DIN EN 1946
PCDF Summen				
Summe TetraCDF	ng/Probe	0,0743		DIN EN 1948
Summe PentaCDF	ng/Probe	0,0282		DIN EN 1948
Summe HexaCDF	ng/Probe	0,0168		DIN EN 1948
Summe HeptaCDF	ng/Probe	nb	0.0450	DIN EN 1948
OctaCDF	ng/Probe	nd	0,0450	DIN EN 1948
PCDD/F Summen				
Summe Tetra - bis OctaCDDa	ng/Probe	0,272		DIN EN 1948
Summe Tetra - bis OctaCDF	ng/Probe	0,119		DIN EN 1948
Summe Tetra- bis OctaCDD/Fa	ng/Probe	0,391		DIN EN 1948
PCDD/F-TEQ-Werte				
I-TEQ exklusive BG ^a	ng/Probe	0,00410		DIN EN 1948
I-TEQ inklusive BG ^b	ng/Probe	0,00759	0,00594	DIN EN 1948
WHO-PCDD/F-TEQ 2005 exkl. BG ^a	ng/Probe	0,00406		DIN EN 1948
WHO-PCDD/F-TEQ 2005 inkl. BGb	ng/Probe	0,00809	0,00644	DIN EN 1948
Wiederfindung Probenahmestandard				
WF-12378-PentaCDF-PS	%	104		DIN EN 1948
WF-123789-HexaCDF-PS	%	111		DIN EN 1948
WF-1234789-HeptaCDF-PS	%	106		DIN EN 1948

Die Erläuterungen zu den Indizes entnehmen sie bitte der Legende im Anschluss an die Ergebnistabellen.

Prüfbericht Nr. 1301 20-1990 P01
Datum: 2020-10-14 • Seite: 13 von 18

Tab. 11: Ergebnisse der Analyse einer Abgasprobe auf PCB; Angaben bezogen auf die Gesamtprobe

Probenbezeichnung Auftraggeber		M158 037 - BW		
Probenart mas-Probennummer		Blindprobe Abgas 20-1990-004		
Parameter	Einheit	Messwert	BestGrenze *	Prüfverfahren
Non-ortho WHO-PCB				
PCB 77	ng/Probe	nb	0,100	DIN EN 1948, 4
PCB 81	ng/Probe	nb	0,0500	DIN EN 1948, 4
PCB 126	ng/Probe	nb	0,0250	DIN EN 1948, 4
PCB 169	ng/Probe	nb	0,0500	DIN EN 1948, 4
Mono-ortho WHO-PCB				
PCB 105	ng/Probe	nb	0,500	DIN EN 1948, 4
PCB 114	ng/Probe	nb	0,100	DIN EN 1948, 4
PCB 118	ng/Probe	nb	1,00	DIN EN 1948, 4
PCB 123	ng/Probe	nb	0,100	DIN EN 1948, 4
PCB 156	ng/Probe	nb	0,100	DIN EN 1948, 4
PCB 157	ng/Probe	nb	0,100	DIN EN 1948, 4
PCB 167	ng/Probe	nb	0,100	DIN EN 1948, 4
PCB 189	ng/Probe	nb	0,100	DIN EN 1948, 4
WHO-PCB-TEQ-Werte				
WHO-PCB-TEQ 2005 exkl. BG ^a	ng/Probe	nb		DIN EN 1948, 4
WHO-PCB-TEQ 2005 inkl. BGb	ng/Probe	0,00409	0,00409	DIN EN 1948, 4
Wiederfindung Probenahmestandard	I			
WF PCB 60	%	103		DIN EN 1948, 4
WF PCB 127	%	77		DIN EN 1948, 4
WF PCB 159	%	97		DIN EN 1948, 4

Die Erläuterungen zu den Indizes entnehmen sie bitte der Legende im Anschluss an die Ergebnistabellen.

Prüfbericht Nr. 1301 20-1990 P01 Datum: 2020-10-14 • Seite: 14 von 18

Tab. 12: Ergebnisse der Analyse einer Emissionsprobe auf Benzo[a]pyren; Angaben bezogen auf die Gesamtprobe

Probenbezeichnung Auftraggeber		M158 037 - BW		
Probenart mas-Probennummer		Blindprobe Abgas 20-1990-004		
Parameter	Einheit	Messwert	BestGrenze *	Prüfverfahren
PAK Komponenten				
Benzo[a]pyren	μg/Probe	nd	0,0100	VDI 3874

Die Erläuterungen zu den Indizes entnehmen sie bitte der Legende im Anschluss an die Ergebnistabellen.

\\S-MUC-FS01\ALLEFIRMEN\\M\PROJ\158\\M158037\\M158037_\02_BER_1D.DOCX:27.11.2020

Prüfbericht Nr. 1301 20-1990 P01 Datum: 2020-10-14 • Seite: 15 von 18

Legende

- Die Nachweisgrenzen sind in der Regel jeweils um Faktor 3 niedriger als die angegebenen Bestimmungsgrenzen
- nd
- nb
- nicht detektiert oberhalb der angegebenen Bestimmungsgrenze (BG)
 Wert nicht berechnet, da keines der Kongenere oberhalb der Bestimmungsgrenze (BG) lag
 Summen- oder TEQ-Wert berechnet unter Einbezug nur der quantifizierten Kongenere (konzentrationsuntergrenze)
- Summen- oder TEQ-Wert berechnet unter Einbezug der vollen Bestimmungsgrenze (BG) für nicht quantifizierte Kongenere (Konzentrationsobergrenze)

mas | münster analytical solutions gmbh · Technologiepark Münster · Wilhelm-Schickard-Straße 5 · 48149 Münster · Internet: www.mas-tp.com

ELR/MNR

Prüfbericht Nr. 1301 20-1990 P01 Datum: 2020-10-14 • Seite: 16 von 18

TE-Faktoren nach NATO/CCMS (I-TEF) und WHO 2005 (WHO-TEF) sowie Angaben zur relativen erweiterten Messunsicherheit der analytischen Bestimmung der PCDD/F

	Struktur-	TE-Fak	ctoren	Relative Messunsicherheit
PCDD/F Kongenere	formel	NATO/CCMS 1988	WHO 2005	messunsicherneit %
2378-TetraCDD	000	1,0	1,0	26,7
12378-PentaCDD	000	0,5	1,0	22,8
123478-HexaCDD	000	0,1	0,1	34,1
123678-HexaCDD	000	0,1	0,1	25,9
123789-HexaCDD	000	0,1	0,1	21,6
1234678-HeptaCDD	000	0,01	0,01	89,4
OctaCDD	0.0	0,001	0,0003	96,4
2378-TetraCDF	000	0,1	0,1	27,0
12378-PentaCDF	0.0	0,05	0,03	23,6
23478-PentaCDF	0.0	0,5	0,3	28,6
123478-HexaCDF	0.0	0,1	0,1	27,9
123678-HexaCDF	0.0	0,1	0,1	21,7
123789-HexaCDF	0.0	0,1	0,1	21,7
234678-HexaCDF	0.0	0,1	0,1	21,8
1234678-HeptaCDF	0.0	0,01	0,01	23,5
1234789-HeptaCDF	000	0,01	0,01	24,8
OctaCDF	0.0	0,001	0,0003	25,7
I-TEQ		*		23,9
WHO-TEQ 2005				23,5

Die Messunsicherheit wurde nach DIN ISO 11352:2013-03 abgeleitet. Sie stellt die erweiterte Unsicherheit dar und wurde mit einem Erweiterungsfaktor von k=2 erhalten. Dies entspricht einem Vertrauensniveau von ungefähr 95 %.

Prüfbericht Nr. 1301 20-1990 P01
Datum: 2020-10-14 • Seite: 17 von 18

TE-Faktoren nach WHO 2005 (WHO-TEF) sowie Angaben zur relativen erweiterten Messunsicherheit der analytischen Bestimmung der dI-PCB (WHO-PCB)

PCB Kongener	Strukturformel	WHO 2005	Relative Messunsicherheit %
non-ortho PCB			
PCB 77	a	0,0001	29,3
PCB 81	•	0,0003	27,7
PCB 126		0,1	29,5
PCB 169		0,03	30,4
mono-ortho PCB			
PCB 105	a—————————————————————————————————————	0,00003	37,3
PCB 114	aa	0,00003	30,7
PCB 118	0-5	0,00003	34,2
PCB 123	a->	0,00003	50,4
PCB 156	c a	0,00003	34,3
PCB 157		0,00003	31,4
PCB 167	0-5-0	0,00003	27,5
PCB 189	C C C C C C	0,00003	34,7
WHO-TEQ 2005			28,6

Die Messunsicherheit wurde nach DIN ISO 11352:2013-03 abgeleitet. Sie stellt die erweiterte Unsicherheit dar und wurde mit einem Erweiterungsfaktor von k=2 erhalten. Dies entspricht einem Vertrauensniveau von ungefähr 95 %.

\\S-MUG-FS01\ALLEFIRMEN\\M\PROJ\158\\M158037\\M158037_02_BER_1D.DOCX:27. 11. 2020

Prüfbericht Nr. 1301 20-1990 P01

Datum: 2020-10-14 • Seite: 18 von 18

Relative erweiterte Messunsicherheit für die Bestimmung von Benzo[a]pyren mittels HRGC/LRMS unter Verwendung eines internen deuterierten Benzo[a]pyren-Standards

PAK-Komponente	Struktur- formel	Relative Messunsicherheit %
Benzo[a]pyren		24,0

Die Messunsicherheit wurde nach DIN ISO 11352:2013-03 abgeleitet. Sie stellt die erweiterte Unsicherheit dar und wurde mit einem Erweiterungsfaktor von k=2 erhalten. Dies entspricht einem Vertrauensniveau von ungefähr 95 %.